

Single Schmitt-Trigger Inverter

Description

The FLG1G14 Single Schmitt-trigger inverter is designed for 1.65V to 5.5V V_{CC} operation.

The FLG1G14 device contains one inverter and performs the Boolean function $Y = \overline{A}$. The device functions as an independent inverter with Schmitt trigger inputs, so the device has different input threshold levels for positive-going (V_{T+}) and negative going (V_{T-}) signals to provide hysteresis (ΔV_T) which makes the device tolerant to slow or noisy input signals.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The FLG1G14 is available in Green SOT23-5, SC70-5 packages. It operates over an ambient temperature range of -40°C to 125°C.

Features

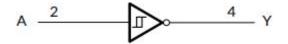
- Operating Voltage Range: 1.65V to 5.5V
- Low Power Consumption:1µA (Max)
- Operating Temperature Range: -40°C to +125°C
- Input accept Voltage to 5.5V
- High Output Drive: ±24mA at V_{CC}=3.0V
- I_{off} Supports Partial-Power-Down Mode Operation
- ESD Protection Exceeds JESD 22
 - 4000-V Human-Body Model
 - 200-V Machine Model (A115)
 - 1000-V Charged-Device Model (JS-002)
- Micro SIZE PACKAGES: SOT23-5, SC70-5

Applications

- AC Receiver
- Home Theaters
- Blu-ray Players
- Desktops or Notebook PCs
- Digital Video Cameras (DVC)
- Mobile Phones

1

- Personal Navigation Device (GPS)
- Portable Media Player


Order information (1)

Mode	Package	Specified Temperature range	Ordering Number	Packing Option
FLG1G14	SOT23-5	-40°C to +125°C	FLG1G14YSOT235G/TR	Tape and Reel,3000
	SC70-5 (2)	-40°C to +125°C	FLG1G14YSC705G/TR	Tape and Reel,3000

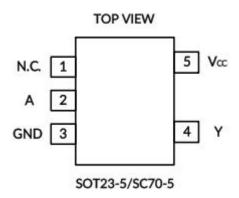
Note:

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document.
- (2) Equivalent to SOT353.

Functional Block Diagram

Function Table

INPUT	OUTPUT
A	Y
Н	L
L	Н


Note:

H=High Voltage Level

L=Low Voltage Level

$$Y = \overline{A}$$

Pin Configuration

Pin Description

Pin SOT23-5/SC70-5	Name	I/O Type (1)	Function
1	N.C.	-	Not connected
2	A	I	Input
3	GND	P	Ground
4	Y	О	Output
5	V _{CC}	P	Power Pin

Note:

I=input, O=output, P=power.

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)

			Min	Max	Unit
V_{CC}	Supply voltage range		-0.5	6.5	V
V_{I}	Input voltage range (2)		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-impedan	ce or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in the high or low st	ate (2)(3)	-0.5	V _{CC} +0.5	V
I_{IK}	Input clamp current	V _I <0		-50	mA
I_{OK}	Output clamp current	V_{O} <0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
0		SOT23-5		208	
$\theta_{ m JA}$	Package thermal impedance (4)	SC70-5		283	°C/W
T_{J}	Junction temperature (5)			150	°C
T _{stg}	Storage temperature			150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of V_{CC} is provided in the Recommended Operating Conditions table.
- (4) The package thermal impedance is calculated in accordance with JESD-51.
- (5) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

		Value	Unit
	Human-body model (HBM)), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	± 4000	V
V Electrostatic discharge	Charged device model (CDM)	± 1000	V
V _(ESD) Electrostatic discharge	Machine model (MM))	±200	V

Note:

(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Recommanded Operating Range

over recommended operating free-air temperature range (Full=-40 $^{\circ}$ C to +125 $^{\circ}$ C,TYP values are at T_A = +25 $^{\circ}$ C, unless otherwise noted.) (1)

Parameter	Symbol	Test Conditions	Min	Max	Unit
G 1 1	17	Operating	1.65	5.5	V
Supply voltage	$V_{\rm CC}$	Data retention only	1.5		V
Input voltage	$V_{\rm I}$		0	5.5	V
Output voltage	Vo		0	V_{CC}	V
Operating temperature	T _A		-40	+125	°C

Note: (1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

Electrical Characteristics

DC Characteristics

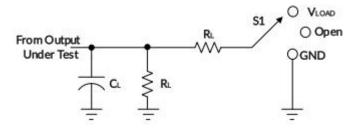
over recommended operating free-air temperature range (TYP values are at $T_A = +25$ °C, unless otherwise noted.) (1)

	Parameter	Test Conditions	V_{CC}	Temp	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Unit
			1.65V		0.75		1.05	
V _{T+} Positive going input threshold voltage		2.3V		1.25		1.55		
		3V	Full	1.5		2.1		
		4.5V		2.3		3.0	V	
		5.5V		2.8		3.4		

			1.65V		0.3		0.6	
			2.3V		0.35		0.65	
V _{T-}	Negative going input threshold		3V	Full	0.45		0.75	
	voltage		4.5V		0.7		1.0	V
			5.5V		0.85		1.15	
			1.65V		0.35		0.6	
			2.3V		0.6		1.2	
ΔV_T	Hysteresis $(V_{T+} - V_{T-})$		3V	Full	1.05		1.65	
	(V T+ - V T-)		4.5V		1.6		2.0	V
			5.5V		1.95		2.25	
		$I_{OH} = -100 \mu A$	1.65V to 5.5V		V _{CC} -0.1			
		$I_{OH} = -4mA$	1.65V		1.2			
		$I_{OH} = -8mA$	2.3V		1.9			V
		$I_{OH} = -16 \text{mA}$	3V	Full	2.4			
	$ m V_{OH}$	I _{OH} =- 24mA			2.3			
		$I_{OH} = -32mA$	4.5V	3.8				
		$I_{OL} = 100 \mu A$	1.65V to 5.5V				0.1	
		$I_{OL} = 4mA$	1.65V				0.45	
		$I_{OL} = 8mA$	2.3V	E11			0.3	
		$I_{OL} = 16 \text{mA}$		Full			0.4	
	$ m V_{OL}$	$I_{OL} = 24 \text{mA}$	3V				0.55	
		$I_{OL} = 32 \text{mA}$	4.5V				0.55	
T.	A immut	V _I =5.5V or GND	0V to 5.5V	+25°C		±0.1	±1	
II	A input	VI-3.3 V OF GND	0 0 10 3.3 0	Full			±5	μΑ
I _{off}		V_{I} or V_{O} =5.5 V	0	+25°C		±0.1	±1	
loff		V101 V0-3.3 V	U	Full			±10	μΑ
	I_{CC}	V _I =5.5V or GND, I _O =0	1.65V to 5.5V	+25°C		0.1	1	μΑ
	1((V1 3.3 V OI OIVD, 10-0	1.05 1 10 5.5 1	Full			10	μΛ
	ΔI_{CC}	One input at V_{CC} -0.6V, Other inputs at V_{CC} or GND	3V to 5.5V	Full			500	μΑ

- (1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.
- (2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

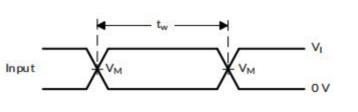
AC Characteristics

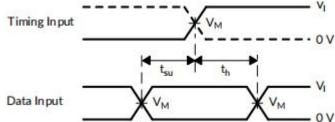

over recommended operating free-air temperature range (Full=-40 $^{\circ}$ C to +125 $^{\circ}$ C,TYP values are at T_A = +25 $^{\circ}$ C, unless otherwise noted.) (1)

Parameter	Symbol	Test Conditions			Typ ⁽³⁾	Max ⁽²⁾	Unit
		V _{CC} =1.8V±0.15V	$C_L=30pF, R_L=500\Omega$		7.5		
		V _{CC} =2.5V±0.2V	$C_L = 30 pF, R_L = 500 \Omega$		3.6		
Propagation Delay	$t_{ m pd}$	V _{CC} =3.3V±0.3V	C_L =50pF, R_L =500 Ω		3.1		ns
		V _{CC} =5V±0.5 V	C_L =50pF, R_L =500 Ω		2.7		
Input Capacitance	Ci	V _{CC} =0V	V _I =V _{CC} or GND		4		pF
		V _{CC} =1.8V			20		
Power dissipation	Cpd	V _{CC} =2.5V	C 10MH		21		_
capacitance		V _{CC} =3.3V	f=10MHz		22		pF
		V _{CC} =5V			25		

Note:

- (1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.
- (2) This parameter is ensured by design and/or characterization and is not tested in production.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.


Parameter Measurement Information



Test	S1
t _{PLH} /t _{PHL}	Open
$t_{\rm PLZ}/t_{\rm PZL}$	$ m V_{LOAD}$
$t_{\mathrm{PHZ}}/t_{\mathrm{PZH}}$	GND

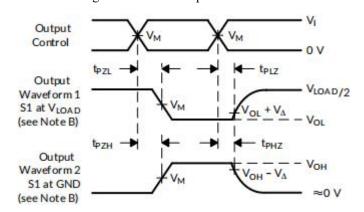
V_{CC}	INPUTS		V	V	CL	R _L	${ m V}_{\Delta}$	
V CC	VI	tr/tf	$V_{ m M}$ $V_{ m LOAD}$		CL	KL.	VΔ	
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2 x Vcc	30pF	500Ω	0.15V	
2.5V±0.2V	V _{CC}	≤2ns	V _{CC} /2	2 x V _{CC}	30pF	500Ω	0.15V	
3.3V±0.3V	3V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V	
5V±0.5V	V_{CC}	≤2.5ns	V _{CC} /2	2 x V _{CC}	50pF	500Ω	0.3V	

Voltage Waveforms Pulse Duration

Output

V_M

V_M


V_M

O V

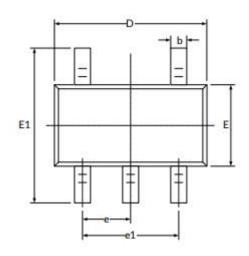
V_M

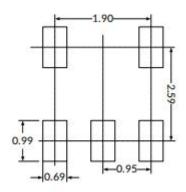
V_{OH}

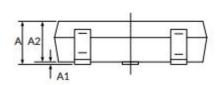
Voltage Waveforms Setup And Hold Times

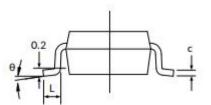
Voltage Waveforms Propagation Delay Times Invertion And Noninverting Outputs

Voltage Waveforms Enable And Disable Times Low-And High-Level Enabling

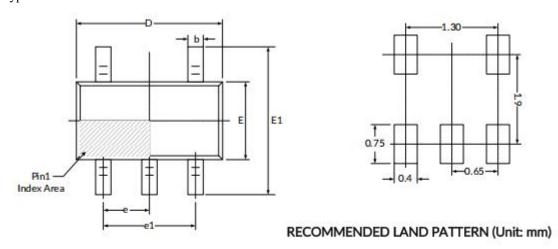

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_0 = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- $E.\ t_{PLZ}$ and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

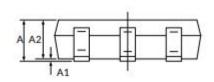

Figure 1. Load Circuit and Voltage Waveforms

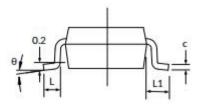

Package Outline Dimensions(All dimensions in mm.)


Package Type: SOT23-5 (3)

RECOMMENDED LAND PATTERN (Unit: mm)




Symph of	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A (1)	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D ⁽¹⁾	2.820	3.020	0.111	0.119	
E (1)	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950(I	BSC) (2)	0.037(BSC) (2)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	


- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.

Package Type: SC70-5 (3)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A (1)	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.080	0.150	0.003	0.006
D (1)	2.000	2.200	0.079	0.087
E (1)	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
e	0.650(BSC) ⁽²⁾		0.026(BSC) ⁽²⁾	
e1	1.300(BSC) ⁽²⁾		0.051(BSC) ⁽²⁾	
L	0.260	0.460	0.010	0.018
L1	0.525		0.021	
θ	0°	8°	0°	8°

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.

Important Notice And Disclaimer

- We reserves the right to change the instruction manual without prior notice.
- Any semiconductor product has a certain possibility of failure or malfunction under specific conditions. The buyer is responsible for complying with safety standards and taking safety measures when using our products for system design and overall manufacturing to avoid potential failure risks that may cause personal injury or property damage.
- The improvement of product quality is endless, our company will be dedicated to provide customers with better products.