

FAD7793 3通道 24位 ADC

产品概况

FAD7793是一款适合高精度测量应用的低功耗、低噪声24位Σ-Δ型ADC,其中含有3个差分模拟输入,还集成了片内低噪声仪表放大器,因而可直接输入小信号。FAD7793可以采用内部时钟或外部时钟工作,输出数据速率可通过软件编程设置,可在4.17Hz至940Hz的范围内变化。

FAD7793采用2.7V至5.25V电源供电,典型功 耗为360μA,采用16引脚TSSOP封装。

主要性能

- 工作电压范围: 2.7V~5.25V
- 最高 23 位有效分辨率
- 均方根(RMS)噪声 38nV(4.17Hz时) 79nV(16.7Hz时)
- 可耗:工作模式: 360µA
- ●支持15种更新速率: 4.17Hz~940Hz

- 3通道差分信号输入
- 内置低噪声放大器
- 增益档位0.5/1/2/4/8/16/32/64/128倍可选
- 内置RCO电路, 频率默认64K
- 内置可编程电流源
- 内置偏置电压发生器
- TSSOP-16封装
- SPI通信接口 支持标准3线SPI接口 最高支持5M SCLK通信时钟 支持CRC和XOR校验

应用场合

- 热电偶测量
- 热敏电阻测量
- RTD测量
- 仪器仪表

功能模块

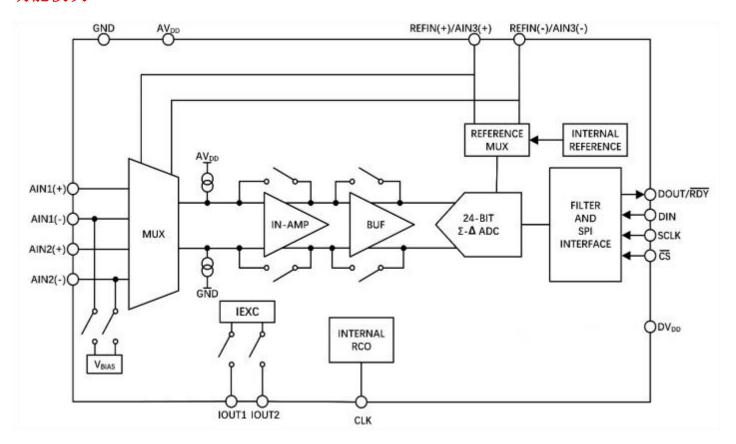


图 1 芯片模块示意图

目录

主要性能1	模拟输入通道以及仪表放大器	25
应用场合1	基准电压	26
产品概况1	时钟	27
功能模块2	双极性/单极性配置	27
目录3	数据输出编码	27
技术规格4	熔断电流	28
ADC 性能指标4	激励电流	28
时序特性8	偏置电压发生器	28
极限参数10	复位	28
ESD 保护10	AVDD监控器	29
管脚(焊盘)配置及功能说明11	校准	29
典型性能13	寄存器描述	31
均方根噪声(外部基准、内部	寄存器汇总	31
RCO)13	通信寄存器	34
均方根噪声(内部基准、内部	状态寄存器	35
RCO)13	模式寄存器	35
测试图表15	配置寄存器	37
ADC 电路信息19	数据寄存器	38
概述19	ID 寄存器	
数字接口21	IO 寄存器	39
单次转换模式22	失调寄存器	39
连续转换模式22	满量程寄存器	39
连续读取22	使用说明	
校验和保护23	外形尺寸	42
由路描述	订购信息	43

技术规格

ADC 性能指标

除非另有说明, $AV_{DD}=2.7V$ 至 5.25V、 $DV_{DD}=2.7V$ 至 5.25V、GND=0V,所有规格均相对于 T_{MIN} 至 T_{MAX} 而言。

表 1 技术规格

参数	条件	最小值	典型值	最大值	单位
ADC 通道					
输出更新速率	940Hz, 见"使用说明"	4.17	4.17	940	Hz
无失码	f _{ADC} <242Hz	24			位
分辨率	见"典型性能"				
输出噪声与更新速率	见"典型性能"				
积分非线性				±15	ppm / FSR
失调误差			±1		μV
失调误差漂移与温 度的 关系			±10		nV/°C
满量程误差			±10		μV
增益漂移与温度的关 增益=1 至 128, 外部基准电压 系			±3		ppm/°C
模拟输入					
差分输入电压范围	V _{REF} =REFIN(+)-REFIN(-),或内部 基准电压,增益=1至 128		±V _{REF} / 增益		V
无缓冲模式	增益=1	GND-30mV		AV _{DD} +30 mV	V
缓冲模式(PGA1)	增益=1	GND+300mV		AV _{DD} -1.1V	V
增益模式(PGA1)	增益=2,4至128	GND+300mV AV _{DI}		AV _{DD} -1.1V	V
输出缓冲模式(PGA2)	增益 0.5,1或 2	增益 0.5, 1 或 2 GND+100mV AV _{DD} -1		AV _{DD} -100mV	
II I# 1 = 0	V _{CM} =(AIN(+)+AIN(-))/2,增益=1	0			V
共模电压(Vсм)	V _{CM} =(AIN(+)+AIN(-))/2,增益=2 至 128	0.5			

参数	条件	最小值	典型值	最大值	单位
模拟输入电流					
缓冲模式和增益模式					,
平均输入电流	增益=1,2,4至128			±2	nA
平均输入电流温漂			±2		pA/°C
无缓冲模式					
平均输入电流	增益=0.5,1或2		±400		nA/V
平均输入电流温漂	输入电流随输入电压而变化		±50		nA/V/°C
输出缓冲模式					
平均输入电流	增益=0.5,1或2		±2.57		uA/V
平均输入电流温漂	输入电流随输入电压而变化		±50		nA/V/°C
共模抑制					
50Hz、60Hz 条件	50Hz, 60Hz		102		dB
基准电压					
内部基准电压	$AV_{DD}=5V$, $T_A=25$ °C		1.2		V
内部基准电压温漂			8		ppm/°C
电源抑制			88		dB
外部基准电压源					_
外部 REFIN 电压	REFIN=REFIN(+)-REFIN(-)		2.5		V
基准电压范围	当 V_{REF} = AV_{DD} 时,如果仪表放大器有效, 则必须将差分输入限制在 0.9 × V_{REF} /增益以内	0.1		$\mathrm{AV}_{\mathrm{DD}}$	V
绝对 REFIN 电压限制		GND-30mV		AV _{DD} +30mV	V
平均基准输入电流			400		nA/V
平均基准输入电流温 漂			±0.03		nA/V/°C
共模抑制			100		dB
激励电流源					
(IEXC1 和 IEXC2) 输出电流			10/210/10 00		μΑ
初始容差(25℃)	校准后		±5		%
温漂			200		ppm/°C

电流匹配	IEXC1与IEXC2的匹配; Vour=0V		±0.5		%
温漂匹配			50		ppm/°C
电压调整率(V _{DD})	$AV_{DD}=5V\pm5\%$		3.5		%/V
负载调整率			0.4		%/V
松山中海中区	所选电流为 10μA 或 210μA			AV _{DD} -0.65	V
输出电源电压	所选电流为 1mA	GND-30mV		AV _{DD} -1.1	V
温度传感器					
精度			±2		°C
灵敏度			1.92		mV/°C
偏置电压发生器					
$V_{ m BIAS}$			AV _{DD} /2		V
V _{BIAS} 发生器启动时间	取决于 AIN 引脚上的电容值		见图 7		ms/nF
内部/外部时钟					
内部时钟					
频率	校准后	64-3%	64	64+3%	KHz
占空比			50:50		%
外部时钟					
频率	使用 2 分频功能时 (CLK_SEL=11), 可以采用 128KHz 外部时钟		64		KHz
占空比	适用于 64KHz 外部时钟;如果 是 128 KHz 时钟,占空比要求 可以稍低	45:55		55:45	%
逻辑输入					
 CS 、SCLK、CLK 和 DIN(施密特触发 器输入)					
VT(+)	DV _{DD} =5V	2.8		3.3	V
VT(+)	DV _{DD} =3V	1.7		2.1	V
VT()	DV _{DD} =5V	1.57		2	V
VT(-)	DV _{DD} =3V	0.88		1.23	V
输入电流	V _{IN} =DV _{DD} 或 GND			±10	μΑ
输入电容	所有数字输入		10		pF

参数	条件	最小值	典型值	最大值	单位
逻辑输出(包括 CLk	()				
Von,输出高电压	DV _{DD} =3V,I _{SOURCE} =100μA	DV _{DD} -0.2			V
Vol,输出低电压	DV _{DD} =3V,I _{SINK} =100μA			0.2	V
V _{OH} ,输出高电压	DV _{DD} =5V,I _{SOURCE} =100μA	DV _{DD} -0.1			V
Vol, 输出低电压	DV _{DD} =5V,I _{SINK} =100uA			0.1	V
浮空态漏电流				±10	μΑ
浮空态输出电容				10	pF
数据输出编码			Offset binary		
系统校准			1 Silling		
满量程校准限值				+1.05×FS	V
零电平校准限值		-1.05×FS			V
输入范围		0.8×FS		2.1×FS	V
电源要求					
电源电压					
AVDD 至 GND		2.7		5.25	V
DVDD 至 GND		2.7		5.25	V
电源电流					
	AV _{DD} =3V, 无缓冲模式,外部基准电压		115		μΑ
	AV _{DD} =5V, 无缓冲模式,外部基准电压		180		uA
I _{DD} 电流	AV _{DD} =3V,缓冲模式,增 益=1, 外部基准电压		185		μΑ
	AV _{DD} =5V,缓冲模式, 增 益=1, 外部基准电压		285		μΑ
	AV _{DD} =3V,增益=2至 128, 内部基 准电压		360		μΑ
	AV _{DD} =5V,增益=2至 128, 内部基 准电压		380		μΑ

时序特性

除非另有说明, AV_{DD}=2.7V 至 5.25V、DV_{DD}=2.7V 至 5.25V、GND=0V,输入逻辑 0=0V,输入逻辑 1=DV_{DD}。

表 2 时序特性

参数	在 Tmin 和 Tmax 条件下的限值(B级)	最小值	典型值	最大值	单位
t_3	SCLK 高电平脉冲宽度	100			ns
t 4	SCLK 低电平脉冲宽度	100			ns

读取操作

	CS 下降沿到 DOUT/RDY 有效时间	0		ns
t_1	DV _{DD} =4.75V 至 5.25V		60	
	DV _{DD} =2.7V 至 3.6V		80	
	SCLK 有效沿到数据有效延迟	0		ns
t ₂	DV _{DD} =4.75V 至 5.25V		60	
	DV _D D=2.7V 至 3.6V		80	
,	CS 无效沿后的总线施放时间	10		ns
t 5			80	
t ₆ SCLK 无效沿到 CS 无效沿		0		ns
\mathbf{t}_7	SCLK 无效沿到 DOUT/RDY 高电平	10		ns

写入操作

t ₈	CS 下降沿到 SCLK 有效沿设置时间	0		ns
t ₉	数据有效到 SCLK 沿设置时间	30		ns
t ₁₀	数据有效到 SCLK 沿保持时间	25		ns
t ₁₁	CS 上升沿到 CLK 沿保持时间	0		ns

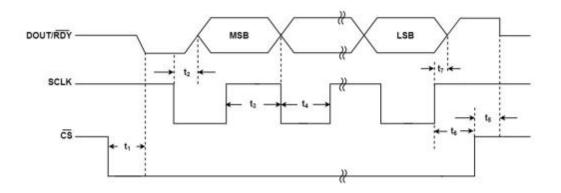


图 2 读取周期时序图

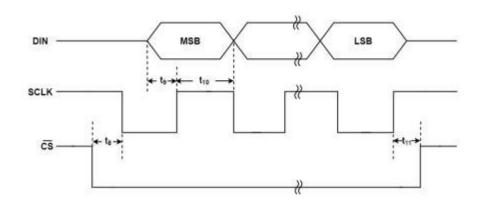


图 3 写入周期时序图

极限参数

AV_{DD} 至 GND0.3V 至 7V
DV _{DD} 至 GND0.3V 至 7V
模拟输入电压至 GND0.3V 至 AV _{DD} +0.3V
基准输入电压至 GND0.3V 至 AV _{DD} +0.3V
数字输入电压至 GND0.3V 至 DV _{DD} +0.3V
数字输出电压至 GND0.3V 至 DV _{DD} +0.3V
工作温度范围40°C 至 105°C
存储温度范围65°C 至 150°C
ESD
HBM4000V
CDM500V
Latch up 电流

注意: 对以上所列的最大极限值,如果器件工作在超过此极限值的环境中, 很可能会对器件造成永久性破坏。在实际运用中, 最好不要使器件工作在此极限值或超过此极限值的环境中。

本产品属于静电敏感器件。当拿取时,要采取合适的 ESD 保护措施,以免造成性能下降或功能失效。

管脚(焊盘)配置及功能说明

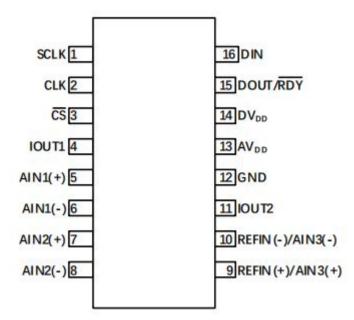


图 4 FAD7793 管脚(焊盘) 配置(俯视图)

表 3 管脚定义

引脚编号	引脚名称	引脚类型	引脚功能
1	SCLK	AI	串行时钟输入。该串行时钟可以是连续式时钟,所有数据均在连 续的脉冲串 中传输。
2	CLK	AIO	时钟输入/时钟输出引脚。当内部时钟被禁用后,可以采用外部时钟驱动该 ADC。这样, 多个 ADC 可以由同一时钟驱动, 从而执行同步转换。
3	CS	AI	片选输入引脚。这是一个低电平有效逻辑输入引脚,用于选择 ADC
4	IOUT1	AO	内部激励电流源的输出引脚。通过此引脚可提供内部激励电流。 用户可以通 过编程设置内部激励电流源,以便将电流设置为 10µA、210µA 或 1mA。可以 将 IEXC1 或 IEXC2 切换至此输出。
5	AIN1(+)	AI	模拟输入引脚。AIN1(+)是差分模拟输入对 AIN1(+)/AIN1(-)的正端。
6	AIN1(-)	AI	模拟输入引脚。AIN1(-)是差分模拟输人对 AIN1(+)/AIN1(-)的负端。
7	AIN2(+)	AI	模拟输入引脚。AIN2(+)是差分模拟输入对 AIN2(+)/AIN2(-)的正端。
8	AIN2(-)	AI	模拟输入引脚。AIN2(-)是差分模拟输人对 AIN2(+)/AIN2(-)的负端。
9	REFIN(+)/AIN3(+)	AI	模拟输入/正基准电压输入引脚。标称基准电压 REFIN(+)至 REFIN (-) 为 2.5V。另外, 该引脚可用作 AIN3(+),即差分模拟输入对 AIN3(+)/AIN3(-)的正 端。

10 REFIN(-)/AIN3(-)	AI	模拟输入/负基准电压输入引脚。除此,该引脚还可用作 AIN3(-) ,即差分模 拟输入对 AIN3(+)/AIN3(-)的负端。
---------------------	----	---

引脚编号	引脚名称	引脚类型	引脚功能
11	IOUT2	AO	内部激励电流源的输出引脚。通过此引脚可提供内部激励电流源。 用户可以 通过编程设置内部激励电流源, 以便将电流设置为 10μA、210μA 或 1mA。可 以将 IEXC1 或 IEXC2 切换至此输出。
12	GND	G	接地基准点。
13	$\mathrm{AV}_{\mathrm{DD}}$	P	电源电压(2.7V 至 5.25V)。
14	$\mathrm{DV}_{\mathrm{DD}}$	Р	数字接口电源引脚。串行接口引脚的逻辑电平与该电源有关, 在 2.7V 与 5.25 V 之间。DV _{DD} 引脚电压与 AV _{DD} 引脚电压无关;因此, AV _{DD} =5V、DV _{DD} =3V, 反之亦然。
15	DOUT/RDY	DO	串行数据输出/数据就绪输出引脚。
16	DIN	DI	串行数据输入。

典型性能

均方根噪声(外部基准、内部 RCO)

表 4 给出了一些更新速率和增益设置下的 FAD7793 的输出均方根噪声。所提供的数据是针对双极 性输入范围以及采用 2.5V 外部基准电压源、内部时钟而言。这些数值为典型值,产生的条件为差分 输入电压为 0V。表 5 列出了根据均方根噪声计算得到的有效分辨率,这些数据为典型值,已四舍五入到最接近的 LSB。

丰 / 龄山均专相隔声()		(米用外部基准电压源、	内部时钟)
		【本用介面奉催里压源、	
表 4 输出均方根噪声(μV)	与增益和输出更新速率的关系	(采用外部基准电压源、	L 1 HAH1 NI 1

更新速率(Hz)	增益=1	增益=2	增益=4	增益=8	增益=16	增益=32	增益=64	增益=128
4.17	0.79	0.55	0.29	0.17	0.11	0.06	0.04	0.03
8.33	0.89	0.72	0.40	0.23	0.15	0.10	0.07	0.05
16.7	1.38	1.25	0.68	0.40	0.24	0.16	0.11	0.08
33.2	2.45	1.94	1.00	0.63	0.39	0.26	0.17	0.14
62	5.85	4.47	2.48	1.45	0.92	0.61	0.44	0.32
123	5.83	4.48	2.49	1.52	0.98	0.63	0.42	0.32
242	5.68	4.53	2.54	1.43	0.93	0.62	0.43	0.32
470	13.09	7.93	3.99	2.29	1.24	0.81	0.53	0.38
940	13.96	7.50	4.13	2.29	1.34	0.86	0.62	0.51

表 5 有效分辨率(位)与增益和输出更新速率的关系(采用外部基准电压源、内部时钟)

更新速率(Hz)	增益=1	增益=2	增益=4	增益=8	增益=16	增益=32	增益=64	增益=128
4.17	22.5	22	22	21.5	21	21	21	20
8.33	22	21	21	21	21	20	20	19
16	21.5	20.5	20.5	20	20	20	19	18.5
33.2	20.5	20	20	19.5	19	19	18.5	18
62	19	19	18.5	18	18	17.5	17	16.5
123	19	19	18.5	18	18	17.5	17	16.5
242	19	19	18.5	18	18	17.5	17	16.5
470	18	18	18	18	18	17	17	16
940	19	19	19	18.5	18	18	18	15

均方根噪声(内部基准、内部 RCO)

表 6 给出了一些更新速率和增益设置下的 FAD7793 的输出均方根噪声。所提供的数据是针对双极 性输入范围以及采用 1.2V 内部基准电压源、内部时钟而言。这些数值为典型值,产生的条件为差分 输入电压为 0V。表 7 列出了根据均方根噪声计算得到的有效分辨率,这些数据为典型值,已四舍五 入到最接近的 LSB。

表 6 有效分辨率(位)与增益和输出更新速率的关系(采用内部基准电压源、内部时钟)

更新速率(Hz)	增益=1	增益=2	增益=4	增益=8	增益=16	增益=32	增益=64	增益=128
4.17	0.58	0.49	0.23	0.16	0.10	0.07	0.048	0.038
8.33	0.86	0.66	0.37	0.23	0.14	0.10	0.07	0.054
16.7	1.43	1.18	0.64	0.37	0.24	0.16	0.11	0.080
33.2	2.29	1.95	0.69	0.64	0.39	0.26	0.18	0.123
62	5.40	4.32	2.45	1.48	0.94	0.65	0.48	0.367
123	5.43	4.58	2.50	1.54	0.98	0.65	0.48	0.380
242	5.60	4.32	2.48	1.46	0.92	0.67	0.48	0.365
470	8.76	5.86	3.14	1.82	1.15	0.79	0.64	0.501
940	8.28	5.69	3.29	1.84	1.15	0.79	0.62	0.552

表 7 有效分辨率(位)与增益和输出更新速率的关系(采用内部基准电压源、内部时钟)

更新速率(Hz)	增益=1	增益=2	增益=4	增益=8	增益=16	增益=32	增益=64	增益=128
4.17	21.5	20.5	21	20.5	20	19.5	19	18.5
8.33	21	20.5	20	20	20	19	18.5	18
16.7	20	19.5	19.5	19.5	19	18.5	18	17.5
33.2	19.5	19	19	18.5	18	18	17.5	17
62	18.5	18	17.5	17	17	17	16	16
123	18.5	17.5	17.5	17	17	16.5	16	15.5
242	18.5	17.5	17.5	17	17	16.5	16	15
470	17.5	17	17	17	16.5	16	15.5	15

940 21.5 20.5	21 20.5	20 19.5	19 18.5	
---------------	---------	---------	---------	--

测试图表

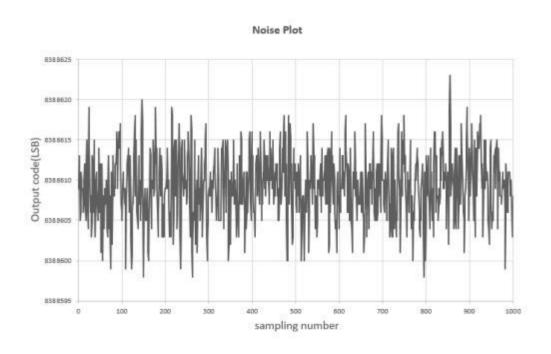


图 5 增益=1 更新速率 4.17Hz 下的典型噪声图

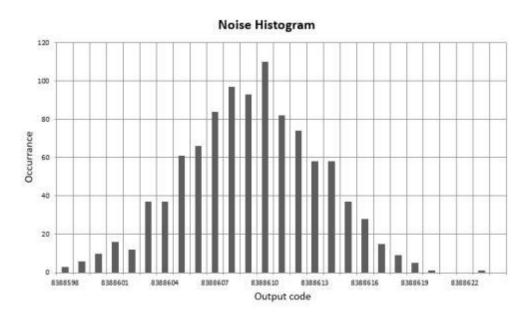


图 6 增益=1 更新速率 4.17Hz 下的噪声分布直方图

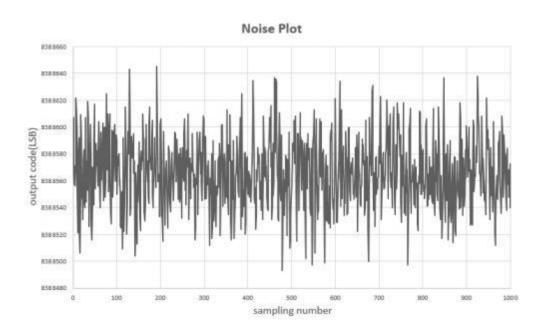


图 7 增益=16 更新速率 16.7Hz 下的典型噪声图

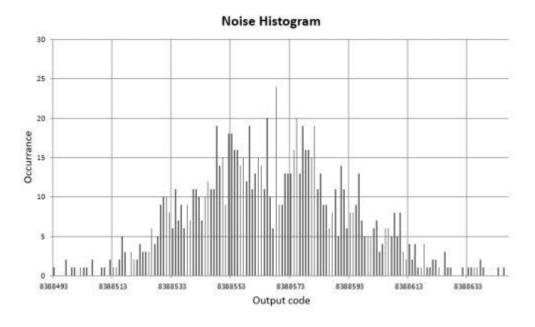


图 8 增益=16 更新速率 16.7Hz 下的噪声分布直方图

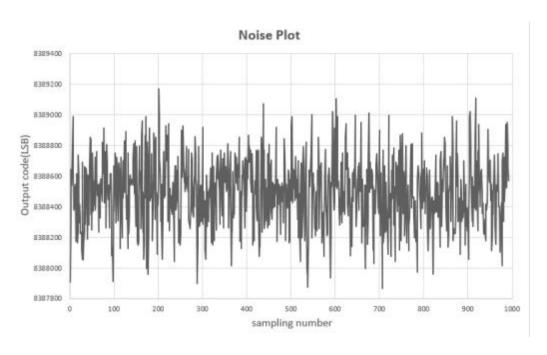


图 9 增益=64 更新速率 470Hz 下的典型噪声图

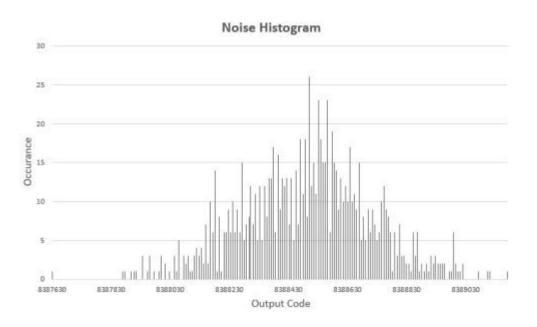


图 10 增益=64 更新速率 470Hz 下的噪声分布直方图

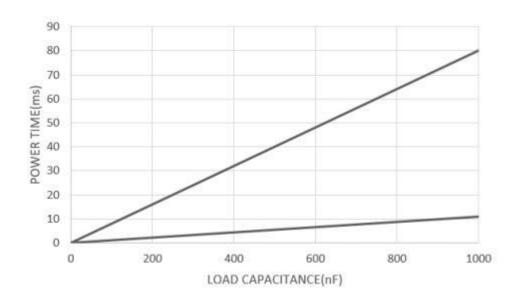


图 11 偏置电压发生器上电时间与负载电容的关系

ADC 电路信息

概述

FAD7793 为低功耗 ADC,内置 Σ - Δ 调制器、缓冲器、基准电压源、仪表放大器和片内数字滤波器,主要用于测量宽动态范围低频信号,例如压力传感器、电子秤和温度测量应用中的信号。

每个器件都有三个差分输入端,可以被配置为缓冲模式或无缓冲模式。该器件既可以采用内部1.2V基准电压也可以采用外部基准电压。图 12显示了器件工作所需的基本连接。

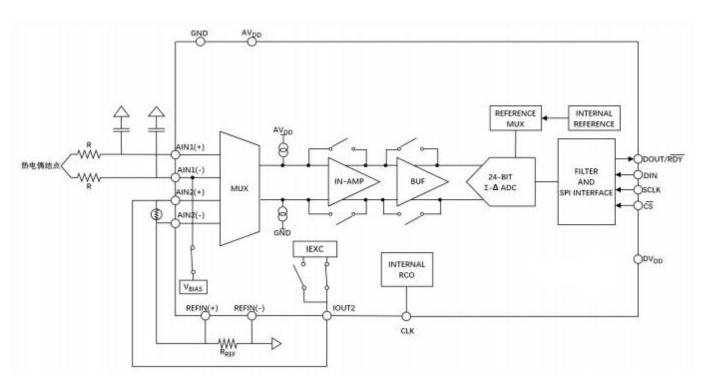


图 12 基本连接图

用户能够通过编程设置 FAD7793 的输出速率(fADC)。表15 列出了可用的更新速率及相应的建立时间。数字滤波器的主要作用是串模干扰抑制。当更新速率为 16.7Hz 或更低时,50Hz 和 60Hz 同时抑制的效果最佳; 因为在这些更新速率下,陷波频率同时为 50Hz 和 60Hz。参见图 11。

图 13 至图 16 显示了不同速率下的各种类型滤波器的频率响应。

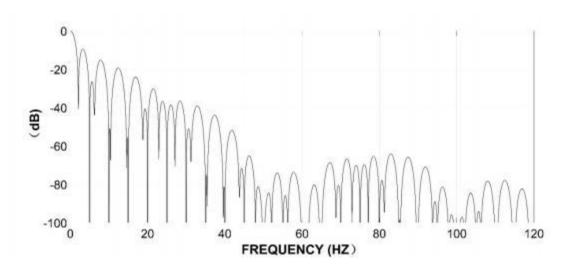


图 13 当更新速率为 4.17Hz 时的滤波器响应

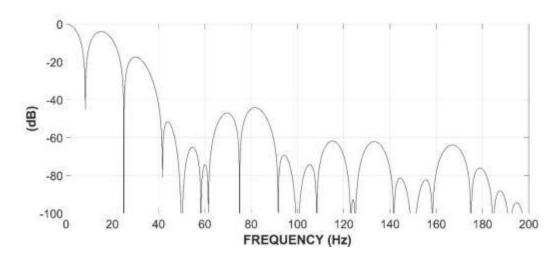
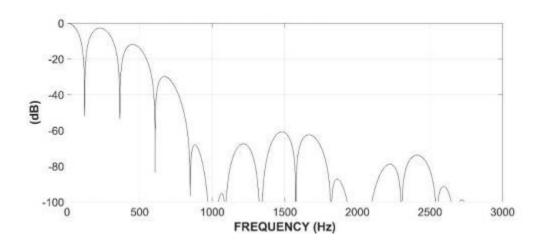
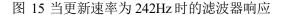




图 14 当更新速率为 16.7Hz 时的滤波器响应

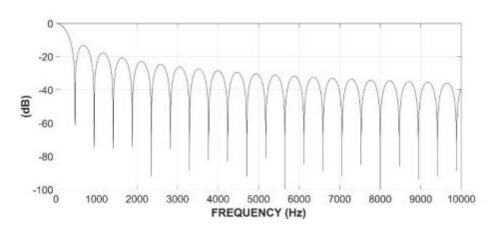


图 16 当更新速率为 470Hz 时的滤波器响应

数字接口

FAD7793 的串行接口由四个信号组成: CS、DIN、SCLK 和 DOUT/RDY 。DIN 线路用于将数据传输至片内寄存器中,DOUT/RDY则用于从片内寄存器中获取数据。SCLK 是器件的串行时钟输入,所有数据传输(无论是 DIN 上还是 DOUT/RDY 上)均与 SCLK 信号相关。DOUT/RDY 引脚也可输出数据就绪信号; 当输出寄存器中有新数据字可用时,该线路变为低电平。对数据寄存器的读操作完成时,该线路复位为高电平。数据寄存器更新之前,该线路也会变为高电平,提示在此时不应对器件进行读操作,以确保在更新数据寄存器的过程中不会发生数据读取操作。CS 用于选择器件,可以在多个器件串行在同一条总线上的系统中对 FAD7793 进行解码。

图 2 和图 3 显示了与 FAD7793 连接的时序图,其中用于对器件进行解码。图 2 显示对 FAD7793 的 输出移位寄存器执行读操作的时序,图 3 显示对输入移位寄存器执行写操作的时序。即使在第一次读操作之后 DOUT/RDY 线路返回到高电平,也可以多次从数据寄存器中读取出相同的字。不过,必 须确保在下一输出更新发生之前完成这些读操作。连续读取模式下,只能对数据寄存器进行一次读操作。

当 CS 处于低电平状态时,串行接口可以在三线式模式下工作。此时,SCLK、DIN 和 DOUT/RDY 用来与 FAD7793 通信。可以用状态寄存器中的 RDY 位监视转换是否结束。

对DIN 输入写入一连串的1,可以复位串行接口。如在至少32个串行时钟内持续向FAD7793 线路内写入逻辑1,可将该串行接口复位。当产生软件错误或系统故障,继而导致接口时序错误时

,这种方法可确保将接口复位到已知状态。复位操作使接口返回到等待对通信寄存器执行写操作的状态。复位后,用户应等待500μs 再访问串行接口。

单次转换模式

在单次转换模式下,FAD7793 在两次转换之间处于关断模式。将模式寄存器中的MD2、MD1 和 MD0 分别设置为0、0、1,可启动单次转换。这时,FAD7793 先执行上电操作,再执行单次转换,然后返回省电模式。

当转换完成后,DOUT/RDY 变为低电平,以便表示转换完成。从数据寄存器中读取数据字后,DOUT/RDY 变为高电平。如果 CS 为低电平,在下一次转换完成之前,DOUT/RDY 将保持高电平。如必要,即使 DOUT/RDY 已变为高电平,也可以多次读取数据寄存器。

连续转换模式

上电后,默认的转换模式为连续转换模式。 FAD7793 执行连续转换时,每次转换完成后,状态寄 存器中的 RDY 位变为低电平。如果CS为低电平,则当一次转换完成时, DOUT/RDY 线路也会变为低电平。若要读取转换结果,用户需要对通信寄存器执行写操作,以便指示下一操作为读取数据寄存器操作。将 SCLK 脉冲施加于 ADC 后,器件立刻在 DOUT/RDY 引脚上执行数字转换。读取转换结果后, DOUT/RDY 返回到高电平。如需要,用户可以多次读取该寄存器。但用户必须确保在下一次转换完成前,不访问数据寄存器;否则,新的转换结果将丢失。

连续读取

可以对 FAD7793 进行配置,使得每次转换完成之后,转换结果自动置于 DOUT/RDY 线路上;而需在每次访问数据前对通信寄存器执行写操作。将 01011100 写入通信寄存器后,用户只需为 ADC提供适当的 SCLK 周期数,即可控制在模数转换完成后,数据自动置于 DOUT/RDY 线路上。 ADC 应配置为连续转换模式。

当 DOUT/RDY 变为低电平,提示转换操作已结束时,必须为 ADC 提供足够的 SCLK 周期数。然后,数据转换结果会置于 DOUT/RDY 线路上。读取转换结果后, DOUT/RDY 返回到高电平,直到下一转换结果可用为止。这种模式下,数据只能被读取一次,另外,用户必须确保在下一次转换操作完成前完成对数据字的读取。如果在下一次转换完成之前,用户尚未读取转换结果,或者为

FAD7793 提供的串行时钟周期数不足以完成对转换字的读取,则当下一次转换完成时,串行输出寄存器将复位,新转换结果将置于输出串行寄存器中。

若要退出连续读取模式,必须在RDY引脚为低电平时将指令01011000写入通信寄存器。此外,如果DIN上连续出现32个1,ADC将复位。因此,在连续读取模式下,在器件接收到指令前,DIN应保持低电平。

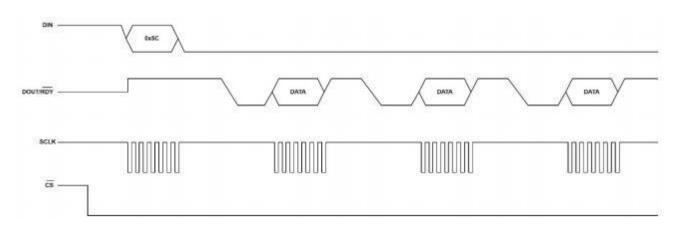


图 17 连续读取

校验和保护

FAD7793 具有校验和模式来提高接口的鲁棒性,使用校验和可确保仅将有效数据写入寄存器,并且可以对从寄存器读取的数据进行验证。如果寄存器写入期间发生错误,状态寄存器的 CRC ERROR 将置 1。为了确保寄存器写入成功,必须回读该寄存器并验证校验和。

写操作期间的CRC 检验和计算使用CRC-8,如下所示:

$$x^8 + x^2 + x + 1$$

读操作期间,用户可以选择CRC-8或XOR函数。 开启或关闭CRC 功能的使能信号CRC_EN位于地址0x08。校验和附加于每次读和写处理的末尾。写处理的校验和利用8位命令字和8至24为数据计算。读处理的校验和利用命令字和8至24位数据输出计算。图18和图19分别显示了SPI读和写处理。

图 18 开启 CRC 功能的 SPI 写处理

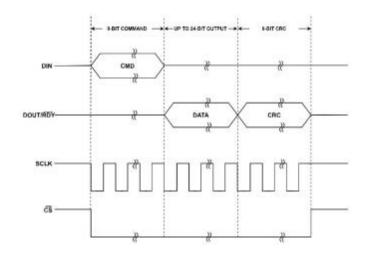


图 19 开启 CRC 功能的 SPI 读处理

连续读取模式有效时,则每次数据传输前存在暗含的读取命令字 0x5C,计算校验和时必须予以考虑。

电路描述

模拟输入通道以及仪表放大器

FAD7793 有 3 个差分模拟输入通道,默认选择通道 1,通过设置 RG_CH[2:0](0x08[2:0])可选择不 同的输入通道。外部基准模式时,通道 3 复用为外部基准输入,不作为信号输入通道。

FAD7793 内置两个低噪声仪表放大器 PGA1 和 PGA2, 低噪声仪表放大器的存在意味着小幅度信 号可以在 FAD7793 内被放大,同时仍然保持出色的噪声性能。如图 18,通道选择之后,PGA1 与 PGA2 级联进入调制器。PGA1 增益可设置为 1, 2, 4, 8, 16, 32, 64 和 128, PGA2 增益可设置为 0.5, 1 和 2,芯片默认工作在 PGA1 使能打开,增益为 1,PGA2 关闭状态。

如表 21 的配置,FAD7793 可设置为无缓冲模式,缓冲模式,增益模式,以及输出缓冲模式。 无缓 冲模式为 BYPASS PGA1 和 PGA2,通道直接与调制器相连;缓冲模式为 PGA1 使能打开, 且增益为 1,PGA2 关闭,芯片默认工作在缓冲模式;增益模式为 PGA1 使能打开,增益设置在 2~128,PGA2 关闭;若调制器需要固定的输入共模电压或者通道输入信号接近零电平可打开输出 缓冲模式,即 PGA2 使能打开,增益可设置为 0.5,1 和 2。PGA2 除了可以单独使能外也可以 与 PGA1 一起使能, 两者一起工作时,等效增益为两者增益乘积。

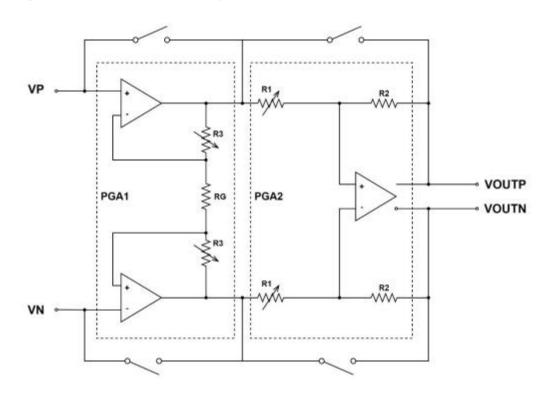


图 20 仪表放大器结构框图

表 8 仪表放大器增益设置

寄存器名称	寄存器地址	默认值	无缓冲模式	缓冲模式	增益模式	输出缓冲模式
EN_PGA	2'h13 [2]	1'b1	1'b0	1'b1	1'b1	1'b1
PGA1_BYPASS	2'h01 [1]	1'b0	1'b1	1'b0	1'b0	1'b1
PGA1_GAINX1_EN	2'h06 [9]	1'b1	X	1'b1	1'b0	X
PGA1_GAIN[2:0]	2'h08 [10:8]	3'b010	X	X	PGA1 增益选择: 3'b000: 增益为 2 3'b001: 增益为 2 3'b010: 增益为 4 (默认) 3'b011: 增益为 8 3'b100: 增益为 16 3'b101: 增益为 32 3'b110: 增益为 64 3'b111: 增益为 128	X
PGA2_BYPASS	2'h01 [2]	1'b1	1'b1	1'b1	1'b1	1'b0
PGA2_GAIN[1:0]	2'h06 [8:7]	2'b01	X	X	Х	2'b00: 增益为 0.5 2'b01: 增益为 1 (默认) 2'b10: 增益为 2 2'b11: 保留

FAD7793 默认工作在缓冲模式,当运行在缓冲模式或者增益模式下时,输入通道连接放大器的高 阻抗输入级,输入端能够耐受较大的源阻抗,适用于那些与外部阻性传感器直接相连的应用,例如 应变计或电阻式温度检测器(RTD)等。当器件运行与输出缓冲模式下时,输入阻抗为 PGA2 的 R1, 阻值为 400K 或 200K 可调。当器件运行在无缓冲模式下时,通道直接与调制器相连,这将导致较高 的模拟输入电流。因此,输入引脚上的电阻与电容组合可能会引起增益误差,具体取决于驱动 ADC 输入的信号源的输出阻抗。表 22 显示了为防止在 20 位分辨率水平条件下产生增益误差,无缓冲模式下外部电阻/电容的容许值。

表 9 20 位分辨率条件下,无增益误差的外部 R-C 组合

C(pF)	$R(\Omega)$
50	9k
100	6k
500	1.5k
1000	900
5000	200

基准电压

FAD7793 既可利用嵌入式1.2V基准电压源为ADC供电,也可以使用外部基准电压源。配置寄存器REF_SEL(0x0e[15:13])用于选择SC1641的基准电压源,REF_SEL默认为3'b000,内部基准电压模式,内部基准电压源被选中后,基准电压源与调制器在器件内部相连。REFIN 引脚不支持内部基准电压源。通过设置寄存器 REF_SEL=3'b110可切换到外部基准电压源,REFIN(+)/AIN3(+)外接2.5V,,REFIN(-)/AIN3(-)外接 0V,同时为了节省功耗,可通过设置RG BUFOP EN=0(0x13[5])来关闭内部基准。

在FAD7793中,建议采用2.5V基准电压源,包括ADR381和ADR391,二者均为低噪声、低功耗基准电压源。另外,基准电压输入能够提供高阻抗、动态负载。由于各基准电压输入的输入阻抗是动态的,因此这些输入端上的电阻与电容组合可能会导致直流增益误差,具体取决于驱动基准电压输入的信号源的输出阻抗。

时钟

FAD7793 默认使用内部时钟模式,内部 RCO 频率设置在 64K,频率精度±3%,CLK PAD 默认不提供时钟信号。通过设置 CLK_SEL=2'b00(0x04[7:6])可切换到外部时钟模式,通过 CLK PAD 外灌64K 时钟,也可通过外灌 128K 时钟,设置 CLK_SEL=2'b01 得到占空比更好的时钟信号。

双极性/单极性配置

FAD7793 的模拟输入端可接受在单极性或双极性输入电压范围。双极性输入范围不代表器件可以耐受相对于系统GND的负电压。AIN(+)输入端的双极性信号和单极性信号均以AIN(-)输入端的电压为基准。例如,如果 AIN(-)为 2.5V,ADC 配置为单极性模式,增益为 1,则 AIN(+)引脚的输入电压范围为 2.5V 至 5V。

如果 ADC 配置为双极性模式,则 AIN(+)输入端的模拟输入范围为 0V 至 5V。通过对寄存器1D[18]进行编程,可将 ADC 配置为单双极性模式或双极性模式。

数据输出编码

当 ADC 配置为单极性工作模式时,输出码为自然(直接)二进制码;零差分输入电压对应的码为 00...00,中间电平电压对应的码为 100...000,满量程输入电压对应的码为 111...111。

 $Code = (2^{N} \times AIN \times GAIN)/V_{REF}$

当 ADC 配置为双极性工作模式时,输出码为偏移二进制码;负满量程电压对应的码为 000...000,零差分输入电压对应的码为 100...000,正满量程输入电压对应的码为 111...111。任何 对应于模拟输入电压的输出码均可表示为:

 $Code = 2^{N-1} \times [(AIN \times GAIN/V_{REF}) + 1]$

其中: AIN 表示模拟输入电压; GAIN 表示仪表放大器的设置(1至 128); SC1641 的 N 值为 24。

熔断电流

FAD7793 内置两个 100nA 恒流发生器: 一个用于提供从 AVDD 到 AIN(+)的源电流,另一个用于提供从 AIN(-)到 GND 的吸电流。这些电流切换至选定的模拟输入对。这两个电流或开或关,取决于配置寄存器中的熔断电流使能(BO)位。在模拟输入通道上执行测量操作之前,可以利用这些电流来确认外部传感器是否正常工作。接通熔断电流后,电流流入外部传感器电路,然后便可在模拟输入通道上测量输入电压。如果测得的电压值为满量程,用户需要确认产生满量程电压的原因。满量程读数意味着可能存在前端传感器开路,也可能是前端传感器过载,通过满量程输出表现出来,或者缺少基准电压,因此,导致数据箝位至全 1。

当输出为全 1 时,用户需要检查是否存在这三种情况,然后做出判断。如果测得的电压为 0V,则可能是传感器短路。正常工作时,应将 0 写入配置寄存器中的 BO 位,以关闭这些熔断电流。电流源工作在常规绝对输入电压范围内,缓冲器开启。

激励电流

FAD7793 内置两个匹配的软件可配置恒流源,其输出电流可通过编程设为 10μA、210μA 或 1mA。来自 AVDD 的这两个源电流直接传输至器件的 IOUT1 或 IOUT2 引脚内。这些电流源通过 IO 寄存器中的配置位进行控制。利用配置位可以使能电流源、将电流源导向 IOUT1 或 IOUT2 以及选择电流值。这些电流源可以用来激励外部阻性电桥或 RTD 传感器。

偏置电压发生器

FAD7793 内置一个偏置电压发生器。它可将所选输入通道的负端的电压偏置至 AV_{DD}/2。这 在热电 偶的应用中非常有用,因为当增益值高于 2 时,必须将热电偶产生的电压偏置数伏直流 电压。这是必须的,因为仪表放大器需要一定的裕量,以确保对接近 GND 或 AV_{DD} 的信号进行精确的转换。

偏置电压发生器由配置寄存器中的 VBIAS1 位、 VBIAS0 位和 BOOST 位共同控制。偏置电压发 生器的上电时间取决于负载电容的大小。为了适应较高的负载电容, FAD7793 配有一BOOST 位。当此位置 1 时,偏置电压发生器的功耗提高,可大幅缩短上电时间。

当偏置电压发生器可用且 BOOST=0 时, SC1641 的功耗提高 40μA,当升压功能使能时器件功耗提高 250μA。

复位

对 FAD7793 连续写入 32 个 1,可以将器件的电路和串行接口复位。这样做可以将所有片内寄存器复位为默认值,同时复位逻辑、数字滤波器和模拟调制器。上电时会自动执行复位操作。启动复位操作后,用户必须等待 100ms 才能访问片内寄存器。如果 SCLK 线路上的噪声导致串行接口变为异步状态,则需要执行复位以恢复同步功能。

AVDD监控器

ADC 除了能够转换外部电压以外,还可以监控 AVpp引脚上的电压。当 CH2 至 CH0 位均为 1时,AVpp引脚上的电压在内部衰减 6倍,所获得的电压施加于 Σ-Δ调制器之上,器件采用 1.2V 内部基准电压驱动以实现模数转换。此特性的用处在于可以监控电源电压的波动。

温度传感器

FAD7793 内部集成了温度传感器, 测量精度为±2℃, 温度与输出 code 成线性关系,公式为如下:

$$Temperature(^{\circ}C) = (\frac{TempReading(uV) - 645610uV}{TempSensorCoefficient}) + 25^{\circ}C$$

Temp Sensor Coefficient=-1920 uV/°C

在使用该公式计算之前,需要将读到的 CODE 折算到电压,计算公式如下:

Temp Reading(uV) =
$$\frac{CODE - 2^{23}}{2^{23}} * 1200000$$

如果需要更好的测量效果,可以在使用前进行校准,校准方法为在室温(RT)下, 计算 RT 下的理想 $CODE_{RT} = \frac{645610 - 1920 * (RT - 25)}{1200000} * 2^{23} + 2^{23}, CODE_{OFFSET} = CODE - CODE_{RT}$,将 $CODE_{OFFSET}$ 写入温度传感器的误差寄存器 $REG_{TEMPOFF}$ (0x1A[23:0]), 并且设置寄存器 $TEMP_{SWITCH=1'b1(0x01[0])}$ 。之后在正常读取温度传感器的结果时就能得到更精确的温度结果。

校准

FAD7793 提供 4 种校准模式。用户可通过对模式寄存器内的模式位(0x04[3:0])进行编程来选择校准模式。校准模式分别为内部零电平校准、内部满量程校准、系统零电平校准和系统满量程校准,执行校准操作可明显降低因噪声而产生的失调误差和满量程误差。每次转换完成后,需利用 ADC 校准寄存器对 ADC 转换结果进行调整,然后,将调整结果写入数据寄存器。转换结果先减去失调校准系数,然后乘以满量程系数。

为启动校准功能,必须将适当的值写入模式寄存器中的 ADC_MODE(0x04[15:13])。当校准完成后,相应校准寄存器的内容会被更新,状态寄存器中的RDY 位被置 1,DOUT/RDY 引脚变为低电平(如果CS为低电平),FAD7793 返回至空闲模式。

内部零电平或内部满量程校准期间,各零输入和满量程输入在内部自动连接至 ADC 输入引脚。然而,系统校准则要求在启动校准模式之前,将系统零电平电压和系统满量程电压施加于 ADC。这样能消除 ADC 的外部误差。

每次更改一个通道的增益时,都需要执行满量程校准,以便将满量程误差降至最小。系统满量程校准可以在所有增益和所有更新速率条件下执行。 为达到更好的校准效果,在时间允许的前提下更新速率越低校准效果越理想。

寄存器描述

寄存器汇总

ADC 由许多片内寄存器进行控制和配置,下面的章节将对这些寄存器进行详细的说明。在下面 的描述中,如无特殊说明,"置 1"表示逻辑 1 状态,"清 0"表示逻辑 0 状态。

寄存器	名称	位	功能	复位	R/W
	$\overline{\text{RDY}}$	[7]	ADC 就绪位		R
	ADC_ERROR	[6]	ADC 错误位		R
0x00	CRC_ERROR	[5]	此未指示寄存器写操作期间是否发生 CRC 错误 0:无错误 1:写寄存器时发生错误		R
	RESERVED	[4:3]	保留		
	CHANNEL	[2:0]	表征 ADC 正在对哪一通道执行转换操作。		R
	RESERVED	[15:3]	保留	13'h200	R/W
	PGA2_BYPASS	[2]	旁路 PGA2	1'h1	R/W
0x01	PGA1_BYPASS	[1]	旁路 PGA1	1'h0	R/W
UXUI	TEMP_SWITCH	[0]	0:OFFSET 校准模块中选择输出 ADC 转换结果 1:OFFSET 校准模块中选择输出温度传感器转换 结 果	1'h0	R/W
0x02	RESERVED	[15:0]	保留	16'h2	R/W
	RG IEXC TRIM	[15:4]	激励电流源电流校准		R/W
	RESERVED	[3:1]	保留	3'h2	R/W
0x03	RG_INAMP_PWRS EL	[0]	根据电源电压选择: 0:AVDD 2.7V~4V 1:AVDD 4V~5.25V	1'h0	R/W
	ADC_MODE	[15:13]	000:连续转换模式 001:单次转换模式 010:空闲模式 011:省电模式 100:内部零电平校准 101:内部满量程校准 110:系统零电平校准 111:系统满量程校准	3'h0	R/W
	RESERVED	[12:8]	保留	5'h0	R/W
0x04	CLK_SEL	[7:6]	RCO 时钟方案选择: 00:64KHz 外部时钟 01:128KHz 外部时钟(内部 DIV2 到 64K) 10:内部时钟。CLK 引脚不提供内部时钟 11:内部时钟。CLK 引脚提供此内部时钟	2'h2	R/W

RESERVED	[5:4]	保留	2'h0	R/W
FS_MODE	[3:0]	滤波器更新速率选择(Hz): 0001:940 (0x04[7:6]=2'b00 且外灌 128K 时钟频率,详细见额外说明部分) 0001:470 0010:242 0011:123 0100:62 0101:50 0110:39	4'hF	R/W

表 10 寄存器汇总

	1		2111222		
			0111:33.2 1000:19.6		
			1000.19.0 1001:16.7(仅陷 50Hz)		
			1010:16.7(同时陷 50 和 60Hz)		
			1011:12.5		
			1100:10		
			1101:8.33		
			1110:6.25		
			1111:4.17		
0x05	RESERVED	[15:0]	保留	16'h950 0	R/W
	RESERVED	[15:10]	保留	3'h5	R/W
	PGA1_GAINX1_EN	[9]	使能时, PGA1 增益等于 1	1'h1	R/W
			PGA2 输出缓冲增益选择:		
0.06			00:X0.5		
0x06	PGA2_GAIN	[8:7]	01:X1	2'h1	R/W
			10:X2		
	DECEDIUS	56.43	11:保留	111.0	D /111
	RESERVED	[6:1]	保留 RCO 振荡器使能信号	1'h0	R/W
	RG RCO EN RG RCO LDO EN	[0] [15]	RCO 旅物新使配信与	1'h1 1'h1	R/W R/W
0x07	RESERVED	[14:0]	保留	8'h0	R/W R/W
	KESEKVED	[14.0]	偏置电压发生器的使能信号:	8 110	IN/ VV
			00:无效		
	RG VBIAS	[15:14]	01:偏置电压连接至 PAD_AIN1	2'h0	R/W
	Ro_vbiris	[13.11]	10:偏置电压连接至 PAD AIN2	2 110	10 11
			11:保留		
	RG_BO	[13]	熔断电流使能, 提供 100nA 电流源	1'h0	R/W
	RESERVED	[12]	保留	1'h0	R/W
	RG_VBIAS_BOOST	[11]	VBIAS 电压缩短上电时间使能信号	1'h0	R/W
			PGA1 增益选择:		
			000:X2		
			001:X2		
	DCA1 CAINI	[10.01	010:X4 011:X8	3'h2	R/W
	PGA1_GAIN	[10:8]		3 112	IX/ VV
			100:X16 101:X32		
0x08			110:X64		
			111:X128		
	RESERVED	[7]	保留	1'h0	R/W

CRC_EN				宏方思法写的 CDC 体外片日		
CRC EN				寄存器读写的 CRC 使能信号。		
RESERVED [4:3] 保留 2:h0 R/W		CRC_EN	[6:5]		2'h0	R/W
RESERVED [4:3] 保留 2:h0 R/W						
RG_CH [2:0] 000:PAD_AIN1(-) 001:PAD_AIN2(-)PAD_AIN3(-) 001:PAD_AIN3(-) 010:PAD_AIN3(-) 010:PA		RESERVED	[4:3]		2'h0	R/W
RESERVED		RG_CH	[2:0]	000:PAD_AIN1(+)-PAD_AIN1(-) 001:PAD_AIN2(+)-PAD_AIN2(-) 010:PAD_AIN3(+)-PAD_AIN3(-) 011:PAD_AIN1(-)-PAD_AIN1(-)	3'h0	R/W
RESERVED [15:6] 保留 6'h34 R/W PASS FRO LDO 1'h1 R/W PASS FRESERVED [4:0] RESERVED [15:5] 保留 5'h04 R/W RESERVED [15:5] 保留 11'h300 R/W RESERVED [15:0] 保留 4'h0 R/W RESERVED [15:0] 保留 4'h0 R/W RESERVED [15:0] 保留 16'h18 R/W RESERVED [15:0] KR RESERVED [15:14] RESERVED RESERVED RESERVED [15:14] RESERVED [15:0] RESERVED RESE						
RESERVED [15:6] 保留						
No.09		RESERVED	[15:6]		6'h34	R/W
RESERVED [4-0] 保留	0x09	RG RCO LDO BY		旁路 RCO LDO		R/W
Name			[4:0]	保留	5'h04	R/W
Name				保留	11'h300	R/W
RESERVED [3:0] 保留	0x0A	RG VBIAS PD	[4]		1'h1	R/W
NACC DATA [23:0] ADC 输出数据 RESERVED [15:14] 保留 2'h2 R/W RG BG_TRIM [13:2] BANDGAP 电压校准 12'h74A R/W RESERVED [1:0] 保留 2'h0 R/W 基准电压模式选择: 000:内部基准电压模式 110:外部基准电压模式 110:外部 R/W 110:N	*****	RESERVED	[3:0]		4'h0	R/W
RESERVED [15:14] 保留	0x0B	RESERVED	[15:0]	保留	16'h18	R/W
0x0D RG BG TRIM RESERVED [13:2] RBANDGAP 电压校准 12h74A R/W RESERVED [1:0] 保留 2'h0 R/W BEF_SEL [15:13] REF_SEL [15:13] Non-sh基准电压模式 其他: Reserved 3'h0 R/W DS_DOUT [8] PAD_DOUT GPIO 驱动能力选择: 0.4mA 1:12mA 1'h0 R/W RG BG_TEST_SEL [7:3] BG 测试模式 5'h00 R/W RG OTP PWR_SW WRITE [2] OTP 烧写开关 1'h0 R/W RESERVED [1:0] 保留 2'h0 R/W 0x0F RESERVED [2:3:3] 保留 21'h180 BA 0x10 ID REG [7:0] 24-bit:0x0b 8'h0b R 0x11 RESERVED [15:0] 保留 16'h0 R/W 0x12 RESERVED [15:0] RG 16'h0 R/W 0x12 RESERVED [15:0] RG 16'h0 R/W	0x0C	DATA	[23:0]			R
RESERVED [1:0] 保留		RESERVED	[15:14]	保留	2'h2	R/W
RESERVED [1:0] 保留	0x0D	RG_BG_TRIM	[13:2]		12'h74A	R/W
REF_SEL [15:13]		RESERVED	[1:0]	保留	2'h0	R/W
DS_DOUT		REF_SEL	[15:13]	000:内部基准电压模式 110:外部基准电压模式	3'h0	R/W
DS_DOUT		RESERVED	[12:9]	保留	4'h0	R/W
RG OTP PWR_SW WRITE 2	0x0E	DS_DOUT	[8]	0:4mA	1'h0	R/W
WRITE		RG_BG_TEST_SEL	[7:3]	BG 测试模式	5'h00	R/W
0x0F RESERVED [23:3] 保留 21'h180 BA R/W BA V2I_SELF_BIAS [2] V2I 电流自偏置使能信号 1'h0 R/W 0x10 ID_REG [1:0] 保留 2'h0 R/W 0x11 RESERVED [15:0] 保留 16'h0 R/W 0x12 RESERVED [15:0] 保留 16'h0 R/W RESERVED [15:0] 保留 6'h0 R/W EN_V2I [9] V2I 使能信号 1'h0 R/W RST_ADC_SOFT [8] ADC 软复位 1'h0 R/W RESERVED [7:6] 保留 2'h0 R/W 0x13 RG BUFOP EN [5] 内部基准模式 BUF 使能 1'h1 R/W		RG_OTP_PWR_SW _WRITE	[2]		1'h0	R/W
RESERVED [23:3] 保留		RESERVED	[1:0]	保留	2'h0	R/W
RESERVED [1:0] 保留 2'h0 R/W		RESERVED	[23:3]	保留		R/W
0x10 ID_REG [7:0] 24-bit:0x0b 8'h0b R 0x11 RESERVED [15:0] 保留 16'h0 R/W 0x12 RESERVED [15:0] 保留 16'h0 R/W RESERVED [15:10] 保留 6'h0 R/W EN_V2I [9] V2I 使能信号 1'h0 R/W RST_ADC_SOFT [8] ADC 软复位 1'h0 R/W RESERVED [7:6] 保留 2'h0 R/W RG_BUFOP_EN [5] 内部基准模式 BUF 使能 1'h1 R/W EN_ADC [4] ADC 使能 1'h1 R/W	0x0F	V2I_SELF_BIAS	[2]	V2I 电流自偏置使能信号	1'h0	R/W
0x11 RESERVED [15:0] 保留 16'h0 R/W 0x12 RESERVED [15:0] 保留 16'h0 R/W EN V2I [9] V2I 使能信号 6'h0 R/W RST_ADC_SOFT [8] ADC 软复位 1'h0 R/W RESERVED [7:6] 保留 2'h0 R/W RG BUFOP EN [5] 内部基准模式 BUF 使能 1'h1 R/W EN_ADC [4] ADC 使能 1'h1 R/W		RESERVED	[1:0]	保留	2'h0	R/W
0x12 RESERVED [15:0] 保留 16'h0 R/W RESERVED [15:10] 保留 6'h0 R/W EN_V2I [9] V2I 使能信号 1'h0 R/W RST_ADC_SOFT [8] ADC 软复位 1'h0 R/W RESERVED [7:6] 保留 2'h0 R/W RG BUFOP EN [5] 内部基准模式 BUF 使能 1'h1 R/W EN_ADC [4] ADC 使能 1'h1 R/W	0x10	ID_REG	[7:0]		8'h0b	
RESERVED [15:10] 保留 6'h0 R/W EN_V2I [9] V2I 使能信号 1'h0 R/W RST_ADC_SOFT [8] ADC 软复位 1'h0 R/W RESERVED [7:6] 保留 2'h0 R/W RG_BUFOP_EN [5] 内部基准模式 BUF 使能 1'h1 R/W EN_ADC [4] ADC 使能 1'h1 R/W		+				R/W
EN_V2I [9] V2I 使能信号 1'h0 R/W RST_ADC_SOFT [8] ADC 软复位 1'h0 R/W RESERVED [7:6] 保留 2'h0 R/W RG_BUFOP_EN [5] 内部基准模式 BUF 使能 1'h1 R/W EN_ADC [4] ADC 使能 1'h1 R/W	0x12					R/W
RST_ADC_SOFT [8] ADC 软复位 1'h0 R/W RESERVED [7:6] 保留 2'h0 R/W RG BUFOP EN [5] 内部基准模式 BUF 使能 1'h1 R/W EN_ADC [4] ADC 使能 1'h1 R/W						R/W
0x13 RESERVED [7:6] 保留 2'h0 R/W RG BUFOP EN [5] 内部基准模式 BUF 使能 1'h1 R/W EN_ADC [4] ADC 使能 1'h1 R/W						R/W
0x13 RG BUFOP EN [5] 内部基准模式 BUF 使能 1'h1 R/W EN_ADC [4] ADC 使能 1'h1 R/W						R/W
EN_ADC [4] ADC 使能 1'h1 R/W						R/W
EN_ADC [4] ADC 使能 1'h1 R/W	0x13		[5]			R/W
EN_BG [3] BG 使能 1'h1 R/W		EN_ADC	[4]	ADC 使能	1'h1	R/W
		EN_BG	[3]	BG 使能	1'h1	R/W

	EN_PGA	[2]	PGA 使能	1'h1	R/W
	RESERVED	[1:0]	保留	2'h0	R/W
	RESERVED	[7:4]	保留	4'h0	R/W
0x14	RG_IEXCDIR	[3:2]	激励电流源方向选择: 00:电流源 IEXC1 连接 IOUT1, 电流源 IEXC2 连接 IOUT2 01:电流源 IEXC1 连接 IOUT2, 电流源 IEXC2 连接 IOUT1 10:两个电流源均连接至 IOUT1, 只有当电流源设 为 10μA 或者 210μA 才能这样设置11:两个电流源均连接至 IOUT2, 只有当电流源设 为 10μA 或者 210μA 才能这样设置	2'h0	R/W

寄存器	名称	位	功能	复位	R/W
	RG_IEXCEN	[1:0]	使能和禁用激励电流源、选择激励电流源: 00:禁用激励电流源 01: 使能 10μA 激励电流源 10: 使能 210μA 激励电流源 11: 使能 1mA 激励电流源	2'h0	R/W
0x15	RESERVED	[7:0]	保留		
0x16	RESERVED	[23:0]	保留		
0x17	RESERVED	[7:0]	保留		
0x18	REG_OFFSET	[23:0]	失调寄存器	24'h0000 00	R/W
	RESERVED	[15:6]	保留	10'h255	R/W
0x19	DOWNSAMPLE_E N	[5]	0: 滤波器更新速率下降一倍 1: 滤波器更新速率保持不变	1'h1	R/W
	RESERVED	[4:0]	保留	5'h16	R/W
0x1A	REG_TEMPOFF	[23:0]	温度传感器 OFFSET 系数	24'h0	R/W
0x1B	RESERVED	[15:0]	保留	16'h540 0	R/W
0x1C	REG_GAIN	[23:0]	增益系数。 保存 ADC 的满量程校准系数	24'h9249 24	R/W
	RESERVED	[23:19]	保留	5'h0A	R/W
	BI_UNIPOLAR	[18]	0:双极性编码 1:单极性编码	1'h0	R/W
0x1D	RESERVED	[17]	保留	1'h1	R/W
	RST_DIG	[16]	0:正常 1:使芯片数字部分(除寄存器之外) 复位	1'h0	R/W
	REF_OFF	[15:0]	基准电压偏差	16'h0	R/W
0x1E	RESERVED	[15:0]	保留	16'h900 0	R/W

通信寄存器

通信寄存器(RS4,RS3,RS2,RS1,RS0=0,0,0,0,0)是一个 8 位只写寄存器。与 ADC 器件之间的所 有通信均必须以对通信寄存器的写操作开始。当接口时序丢失之后, 通过执行至少 32 个串行时钟的 写入逻辑 1 操作,将可以复位整个器件,从而让 ADC 返回此默认状态。表 9 列出了通信寄存器位功 能描述。 CR0至 CR7表示位的位置, CR 说明这些位属于通信寄存器。 CR7表示数据流的第一位。括号中的数值表示该位的上电/复位默认状态。

位 名称 描述 写入使能位。将 0 写入此位后,对通信寄存器的写操作才有效。如果第一位 [7] 写入 1,则器件不会将随后的位载入寄存器,它将停留在此位的位置,直 **WEN** 到此位写入 0。 如果此位为 0,则表示下一个操作是对指定寄存器执行写操作。如果此位为 1, [6] $R\overline{W}$ 则表示下一个操作是对指定寄存器执行读操作。 寄存器地址位。这些地址位决定在串行接口通信期间选择 ADC 的哪些寄存 [5:3] ADDR[4:2] 器。 寄存器地址[4:2]位。 连续读取数据寄存器。当该位被置为 1(且数字寄存器已选) ,串行接口可 以连续从数据寄存器内读取数据。例如,当RDY 引脚变为低电平以提示转换 完成后,在 SCLK 脉冲施加于 ADC 时, 数据寄存器的内容自动置于 [2] **CREAD** DOUT 引脚上。对于 后续数据读取, 不必对通信寄存器执行写操作。要使能 连续读取模式, 必须将指令 01011100 写入通信寄存器。若要退出连续读取 模式,必须在RDY引脚为低电平时将指令 01011000 写入通信寄存器。此外 如果 DIN 上连续出现 32 个 1 , ADC 将复位。因此,在连续读取模式下 在有指令写入器件前, DIN 应保持低 电平。 寄存器地址[1:0]位。 [1:0] ADDR[1:0]

表 11 通信寄存器位功能描述

状态寄存器

状态寄存器(RS4,RS3,RS2,RS1,RS0=0,0,0,0,0; 上电/复位=0x08)是一个 8 位只读寄存器。表 11 列出了状态寄存器位功能描述。 SR0 至 SR7 表示位的位置, SR 说明这些位属于状态寄存器。 SR7 表示数据流的第一位。括号中的数值表示该位的上电/复位默认状态。

表 12 状态寄存器位功能描述

位	名称	描述
[7]	$\overline{\text{RDY}}$	ADC 就绪位。当数据写入 ADC 数据寄存器后, 该位清 0。读取 ADC 数据寄存器之后,或者在用新转换结果更新数据寄存器之前的一段时间内, RDY 位自动置 1,以告知用户不应读取转换数据。当器件在省电模式下时, 该位也为 1。DOUT/ RDY 引脚也会指示转换何时结束。
[6]	ADC_ERROR	ADC 错误位。此位与 RDY 位同时写入。该位为 1 说明写入 ADC 数据寄存器的结果为全 0 或全 1。导致出错的原因为超量程和欠量程。启动转换的写操作可将该位清 0。
[5]	CRC_ERROR	指示寄存器写操作期间是否发生 CRC 错误。 读取寄存器时, 该位清 0 0: 无错误 1: CRC 错误
[4]	RESERVED	保留
[3]	RESERVED	保留。
[2:0]	CHANNEL	这些位表示 ADC 正在对哪一通道执行转换操作。

模式寄存器

模式寄存器(RS4, RS3, RS2,RS1,RS0=0,0,1,0,0; 上电/复位=0x008F)为一 16 位寄存器,可以读取和写入数据。该寄存器用于选择运行模式、更新速率和时钟源。表 13 列出了模式寄存器位功能描述。 MR0 至 MR15 表示位的位置, MR 说明这些位属于模式寄存器。 MR15 表示数据流的第一位。括号中的数值表示该位的上电/复位默认状态。只要对设置寄存器执行写操作,就会复位调制器和滤波器,并将 RDY 位置 1。

表 13 模式寄存器位功能描述

位	名称	描述
[15:13]	ADC_MODE	模式选择位。这些位选择 FAD7793 的工作模式(参见表 14)。
[12:8]	RESERVED	保留。
		这些位用来选择 FAD7793 的时钟源。可以使用片内 64kHz 时钟或外部时钟。借助外部时 钟实现覆写,可保证多个 FAD7793 器件之间的同步。此外, 当采用精确的外部时钟驱动 FAD7793 时, 可以改善 50Hz/60Hz 抑制性能。
		CLK_SEL[1] CLK_SEL[0] ADC Clock Source

[7:6]	CLK_SEL	0 0 1 1	0 1 0 1	64kHz 外部时钟。 128kHz 外部时钟。 外部时钟在 FAD7793 内被 2 分频。 64kHz 内部时钟。CLK 引脚不提供内部时钟。 (默认设置) 64kHz 内部时钟。CLK 引脚提供内部时钟。
[5:4]	RESERVED	保留。		
[3:0]	FS_MODE	滤波器更新速	率选择位(参见	L表 15)。 940Hz 更新速率设置见使用说明部分。

表 14 工作模式

MD2	MD1	MD0	模式
0	0	0	连续转换模式(默认)。 在连续转换模式下, ADC 连续执行转换操作并将结果置于数据寄存器中。当转换完成 后, RDY 变为低电平。将器件置于连续读取模式下之后,用户可以读取这些转换结果 ; 当施加 SCLK 脉冲时,转换结果自动置于 DOUT 线路上。
0	0	1	单次转换模式。 选择单次转换模式之后, ADC 上电并执行单次转换。转换结果被保存在数据寄存器中 , RDY 变为低电平,然后 ADC 返回省电模式。在数据被读取或执行新一次转换之前 ,当前的转换结果将一直被保存在数据寄存器中,并且保持在低电平状态。
0	1	0	空闲模式。 在空闲模式下, ADC 滤波器和调制器保持在复位状态,但仍然提供调制器时钟。
0	1	1	省电模式。 在省电模式下, FAD7793 的所有电路(包括电流源、熔断电流、偏置电压发 生器和 CLKOUT)均处于关闭状态。
1	0	0	内部零电平校准。 内部短路自动连接到使能的通道。当校准启动后, RDY 变为高电平; 当校准操作完成后,RDY 恢复为低电平状态。校准操作完成后,ADC 处于空闲模式。测得的失调系数保存在失调寄存器中。
1	0	1	内部满量程校准。 对于该校准,满量程输入电压会自动连接到选定的模拟输入。 当校准启动后RDY变为高电平;当校准操作完成后,RDY恢复为低电平状态。校准操作 完成后,ADC处于空闲模式。测得的满量程系数保存在满量程寄存器中。

MD2	MD1	MD0	模式
			每次更改一个通道的增益时,都需要执行满量程校准,以便将满量程误差降至最小。
1	1	0	系统零电平校准。 用户应将系统零电平输入连接到由 CH2 位至 CH0 位的值所决定的通道输入引脚。当校准启动后,RDY 变为高电平;当校准操作完成后,RDY 恢复为低电平状态。校准操作完成后,ADC 处于空闲模式。测得的失调系数保存在失调寄存器中。
1	1	1	系统满量程校准。 用户应将系统满量程输入连接到由 CH2 位至 CH0 位的值所决定的通道输入引脚。当校准启动后,RDY 变为高电平;当校准操作完成后,RDY 恢复为低电平状态。校准操作完成后,ADC 处于空闲模式。测得的满量程系数保存在满量程寄存器中。每次更改一个通道的增益时,都需要执行满量程校准。

表 15 可用更新速率

FS3	FS2	FS1	FS0	f _{ADC} (Hz)	t _{SETTLE} (ms)	50Hz/60Hz 抑制(内部时钟)
0	0	0	0	X	X	
0	0	0	1	470	4	
0	0	1	0	242	8	
0	0	1	1	123	16	
0	1	0	0	62	32	
0	1	0	1	50	40	
0	1	1	0	39	48	
0	1	1	1	33.2	60	
1	0	0	0	19.6	101	90dB(仅 60Hz)
1	0	0	1	16.7	120	80dB(仅 50Hz)
1	0	1	0	16.7	120	65dB(50Hz 、60Hz)
1	0	1	1	12.5	160	66dB(50Hz、60Hz)
1	1	0	0	10	200	69dB(50Hz 、60Hz)
1	1	0	1	8.33	240	70dB(50Hz 、60Hz)
1	1	1	0	6.25	320	72dB(50Hz 、60Hz)
1	1	1	1	4.17	480	74dB(50Hz 、60Hz)

配置寄存器

配置寄存器(RS4, RS3,RS2,RS1,RS0=0,1,0,0,0; 上电/复位=0x0200)是一个 16 位寄存器,可以 读取和写入数据。该寄存器用来配置偏置电压发生器使能、熔断电流使能、选择增益以及选择模拟 输入通道。表 16 列出了配置寄存器位功能描述。 CON0 至 CON15 表示位的位置,CON 说明这些位属于配置寄存器。 CON15 表示数据流的第一位。括号中的数值表示该位的上电/复位默认状态。

表 16 配置寄存器位功能描述

位	名称					描述		
•		偏置电压发生器使能。模拟输入的负端的最大偏置电压可达 AVDD/2。这些位应与升 压位 一起使用。						
[15:14]	RG_VBIAS		位 一起 VBIAS		VBIAS0		偏置电压	
			<u>v bias</u> ()	I	0		偏置电压发生器禁用	
			0				偏置电压连接至 AIN1 (-)	
			1		0		偏置电压连接至 AIN2(-)	
		惚	────────────────────────────────────	市能分		「使能信是路	保留 径中的 100nA 电流源。 BO=0 将禁	
[13]	RG_BO	用	熔 断电				效状态时,才能使能熔断电流。	
[12]	RESERVED		留。					
[11]	RG_VBIAS _BOOST		位应与 电时间		l 位和 VBIAS0 位一	·问使用。置	1时,偏置电压发生器的功耗提高,	
		增	益选择位	立。由月	用户写入,以选择了	下列 ADC 输	入范围之一:	
		G 2	G1	G0	増益		ADC 输入范围(2.5V 基准电压)	
		0	0	0	2		1.25V	
[10:8]	PGA1_GAI	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0	1	2		1.25V	
[10.0]	N	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 1	0 1	4 8		625mV 312.5mV	
		$\begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{vmatrix}$ 16			312.3mV 156.2mV			
		1	0	1	32		78.125mV	
		1	1	0	64		39.06mV	
	DEGERMEN	1	1 1377	1	128		19.53mV	
[7]	RESERVED	_	留。 左哭诗:	E的 CD	 C 使能信号。			
			፟	-J D J C N	C 区形旧 5。			
[6:5]	CRC_EN	01	: 使能	寄存器词	卖处理的 XOR 校验	和。		
				写处理均	匀使能 CRC 校验和			
[4:3]	RESERVED	<u> </u>	留。					
		通	道选择位	立。由月	用户写入,以选择 <i>A</i>	ADC 的有效	模拟输入通道:	
		C H 2	CH1	СНО	通道		校准对	
		0	0	0	AIN1(+)-AIN1(-)	0	
[2:0]	CH2 至	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0	1	AIN2(+)-AIN2(/	1	
[2.0]	СН0	0	1	0	AIN3(+)-AIN3(-)	2	
		0	1	1	AIN1(-)-AIN1(-)	0	
		1	0	0	保留			
		1 1	0 1	1 0	保留 温度传感器	É	动选择增益=1,且采用内部基准电压	
		1	1	1	AV _{DD} 监控器	自喜	动选择增益=1/6,且采用 1.2V 基准电	
						压		

数据寄存器

此数据寄存器(RS4,RS3,RS2,RS1,RS0=0,1,1,0,0; 上电/复位=0x0000(00))存储 ADC 的转换结果。它是一个只读寄存器。完成对此寄存器的读操作后, \overline{RDY} 位/引脚置 1。

ID 寄存器

ID 寄存器(RS4,RS3,RS2,RS1,RS0=1,0,0,0,0; 上电/复位=0x0B)存储 FAD7793 的识别号。它是一个只读寄存器。

IO 寄存器

IO 寄存器(RS4,RS3,RS2,RS1,RS0=1,0,1,0,0; 上电/复位=0x00)是一个 8 位寄存器,可以读取和 写入数据。该寄存器用于使能和选择激励电流值。表 19 列出了 IO 寄存器位功能描述。 IO0 至 IO7 表 示位的位置, IO 说明这些位属于 IO 寄存器。IO7 表示数据流的第一位。括号中的数值表示该位的上电/复位默认状态。

表 17 IO 寄存器位功能描述

位	名称		描述				
[7:4]	RESERVED		保留。				
					电流源方向选择位。		
		IEXCDIR1	IEXCDIR0		电流源方向		
		0	0	电流源 脚 IOU	IEXC1 连接至引脚 IOUT1,电流源 IEXC2 连接至引 IT2。		
[3:2]	RG_IEXCDIR	0	1	电流源 脚 IOU	IEXC1 连接至引脚 IOUT2,电流源 IEXC2 连接至引IT1。		
		1	0	两个电	流源均连接至引脚 IOUT1。仅当电流源设为 10μA μA 时, 才允许这样设置。		
		1	1	两个电	流源均连接至引脚 IOUT2。仅当电流源设为 10μA μA 时, 才允许这样设置。		
			这些位可	用于使能	和禁用激励电流源、选择激励电流值。		
		IEXCEN1	IEXC	CEN0	电流源值		
[1:0]	RG IEXCEN	0	()	激励电流禁用		
	_	0		1	10μΑ		
		1)	210μΑ		
		1		1	lmA		

失调寄存器

FAD7793 内置一个 24 位失调寄存器(0x18[23:0]),用于存放失调误差, 失调寄存器的上电/复位值 为 0x000000。如果用户启动内部或系统零电平校准,上电复位值将被自动覆写。失调寄存器为读/写寄存器。对失调寄存器进行写操作时, FAD7793 必须处于空闲模式或省电模式。

满量程寄存器

FAD7793 内置一个 24 位满量程寄存器(0x1C[23:0]),用于存放增益误差,满量程寄存器为读写寄存器。当对满量程寄存器进行写操作时,ADC 必须处于省电模式或空闲模式。这些寄存器在上电时使用工厂校准的满量程校准系数进行配置(执行校准时的增益为 1);该校准系数值取决于所选基准电压(内部基准电压或外部基准电压)。用户在使用前需要启动内部或者系统满量程校准,或者对满量程寄存器执行写操作,覆盖该寄存器默认值。在切换不同的增益档位,或者切换内外部基准电压时,需要重新进行满量程校准。

额外说明

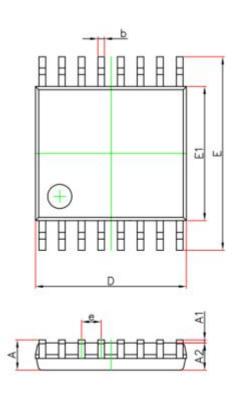
940Hz 更新速率的设置方式

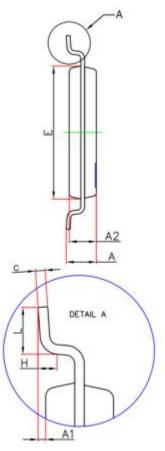
芯片默认使用 64KHz 内部时钟源,更新速率设置范围为 4.17Hz~470Hz.。通过切换到外部时钟源,片外输入 128KHz 外部时钟,FS MODE=0001(0x04),可实现 940Hz 的实际更新速率。

极高精度基准电压的设置方式

芯片默认使用 1.2V 内部基准电压,芯片间基准电压有 0.6%的差异,如应用中需使用精确到 1.2V±0.01%的基准电压,可对输出 CODE 进行后处理。具体操作方式为:在正常使用前对芯片进 行零电平校准和满量程校准,读取满量程校准得到的增益系数(0x1C[23:0]),读取基准电压偏差寄 存器 REF_OFF(0x1D[15:0])地址的数据,计算新的增益系数=增益系数/(1+基准电压偏差),并将其写回寄存器 0x1C[23:0]),此后进行的数据转换都是基于 1.2V±0.01%的基准电压。

进一步提升性能的设置方式


FAD7793 可以在保持当前更新速率下通过提高过采样率提升性能, 无论内部外部基准电压,在外部时钟模式下,都可以通过设置 CLK_SEL=2'b00(0x04[7:6]) , PAD_CLK 外灌 128K,DOWNSAMPLE_EN=1'b0(0x19[5])来得到更好的性能。 表 18 为外部基准电压外部时钟模式在提升性能设置下均方根噪声数据。可见,与表 4 相比,均方根噪声更低,性能更好。


表 18 外部基准电压、外部时钟、缓冲模式在性能提升设置下的均方根噪声

更新速率(Hz)	增益=1
4.17	0.45
8.33	0.63
16.7	1.07
33.2	0.85
62	3.69
123	3.88
242	3.84
470	4.56

外形尺寸

Symbol	Dimensions In	n Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	(2-T)	1.200	/ = 1/2	0.047	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.000	0.031	0.039	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	0.008	
D	4.900	5.100	0.193	0.201	
E	6.250	6.550	0.246	0.258	
E1	4.300	4.500	0.169	0.177	
е	0.650(BSC)	0.026	(BSC)	
L	0.500	0.700	0.020	0.028	
Н	0.250(TYP)	0.010	(TYP)	
θ	1°	7°	1°	7°	

图 21 16 脚 TSSOP 封装尺寸图

订购信息

表 19 订购信息

物料编号	温度范围	封装类型
FAD7793YTSSOP16G/TR	-40 ~ 105°C	TSSOP-16

注: 根据客户需求可以定制封装

实际包装形式根据具体情况而定,如采购数量等。