

# LCD 控制驱动电路

## 概述

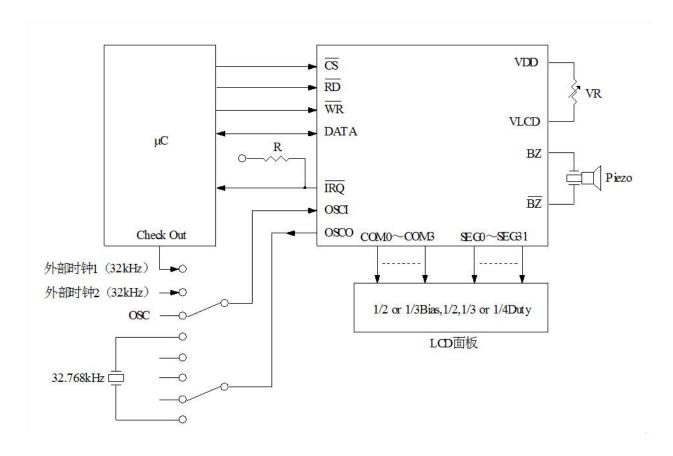
FCD1621 是用来对 MCU 的 I/O 口进行扩展的外围设备。显示矩阵为 32×4,是一个 128 点阵式存储器映射多功能 LCD 驱动电路。 FCD1621 的软件特性使它很适合应用于 LCD 显示,包括 LCD 模块和显示子系统。在主控制器和 FCD1621 之间的接口应用只需要 3 或 4 个端口。Power down 命令可以减少电源损耗。

## 特征

- 工作电压: 2.4V~5.2V
- 256kHz 内建 RC 振荡电路
- 外接 32.768kHz 晶振或 256kHz 时钟输入
- 1/2 或 1/3 的偏置, 1/2、1/3 或 1/4 的占空比
- 内部 Time base 频率源
- 两种蜂鸣器频率可供选择(2kHz/4kHz)

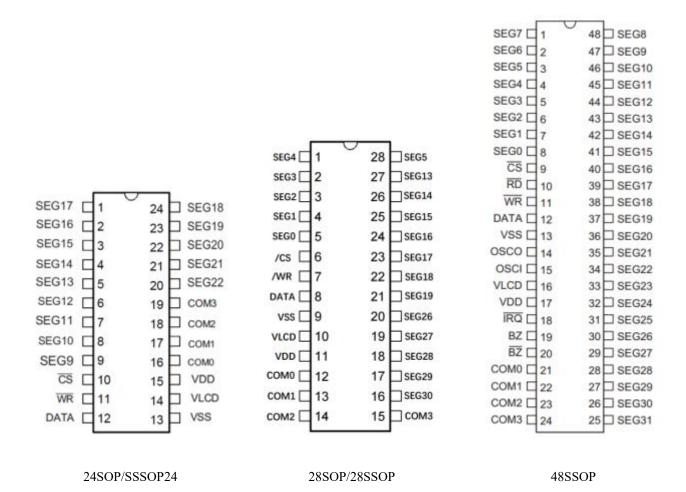
- Power down 命令减少电源损耗
- 内部 Time base 和 WDT 看门狗电路
- Time base /WDT 的溢出输出
- 有 8 种 Time base /WDT 时钟源
- 电池供电设备
- 通信设备
- 音频/视频设备
- 32×4 的 LCD 驱动
- 32×4 位的显示 RAM
- 3端串行接口
- 内部 LCD 驱动频率
- 软件设置

1

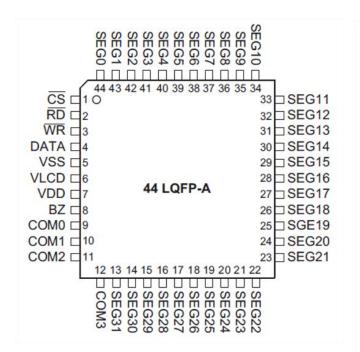

- 数据模式和命令模式指令
- R/W 地址自动累加
- 三种数据访问模式
- 用 VLCD 端子来调节 LCD 电压

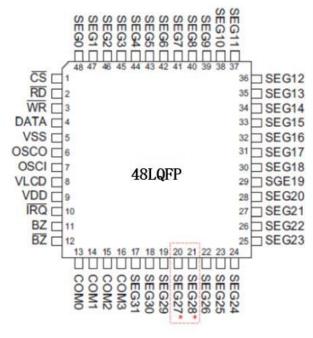


# 订购信息


| 型号      | 封装     | 订购编号               | 包装方式               |
|---------|--------|--------------------|--------------------|
|         | 24SOP  | FCD1621Y24SOPG/TR  | Tape and Reel,2000 |
|         | 24SSOP | FCD1621Y24SSOPG/TR | Tape and Reel,2000 |
|         | 28SOP  | FCD1621Y28SOPG/TR  | Tape and Reel,2000 |
| FCD1621 | 28SSOP | FCD1621Y28SSOPG/TR | Tape and Reel,2000 |
|         | 48SSOP | FCD1621Y48SSOPG/TR | Tape and Reel,2000 |
|         | 44LQFP | FCD1621Y44LQFPG/TR | Tape and Reel,2000 |
|         | 48LQFP | FCD1621Y48LQFPG/TR | Tape and Reel,2000 |

# 典型应用图




## 引脚图

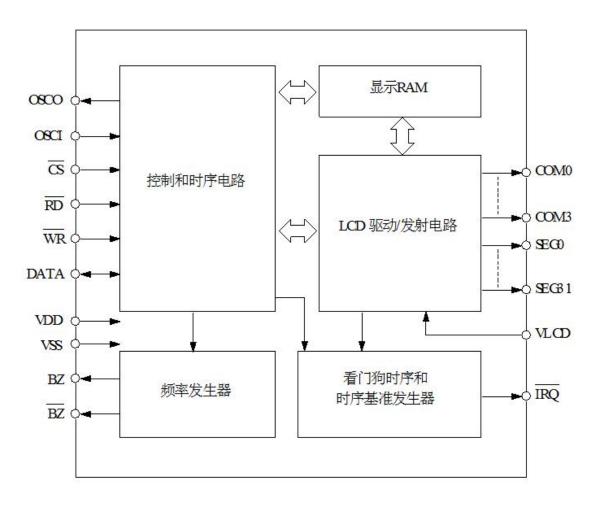








注: 48LQFP 封装, SEG27、SEG28 非顺序排列


# 引脚说明

| 引脚序号 | 引脚名称 | I/O | 说明                                                                                      |
|------|------|-----|-----------------------------------------------------------------------------------------|
| 9    | CS   | I   | 片选信号输入端(带上拉电阻)。当 CS 为逻辑高电平数据和命不能读出或写入,串行接口电路复位。但是如果 CS 为逻辑低电平,控制器与 FCD1621 之间可以传输数据和命令。 |
| 10   | RD   | I   | READ 时钟输入端(带上拉电阻)。RAM 中的数据在 RD 信号的下降沿被输出到 DATA 线上,主控制器可以在下一个上升沿锁存这个数据。                  |
| 11   | WR   | I   | WRITE 时钟输入端(带上拉电阻)。在 WR 信号的上升沿,<br>DATA 线上的数据被锁存到 FCD1621。                              |
| 12   | DATA | I/O | 串行数据输入/输出端(带上拉电阻)。                                                                      |
| 13   | VSS  | -   | 接地端。                                                                                    |
| 15   | OSCI | Ι   | OSCI 和 OSCO 端连接到一个 32.768kHz 的晶振用于产生系统时钟。如果使用外接时钟,则连接到 OSCI 端。但如果选用片内                   |
| 14   | OSCO | О   | 的 RC 振荡电路,则 OSCI 和 OSCO 端悬空。                                                            |
| 16   | VLCD | I   | LCD 电压输入端                                                                               |
| 17   | VDD  | -   | 电源电压                                                                                    |



| 18    | ĪRQ        | О | Time base 或 WDT 溢出标志,N 管开漏输出 |
|-------|------------|---|------------------------------|
| 19,20 | BZ,BZ      | О | 2kHz 或 4kHz 的蜂鸣频率输出          |
| 21~24 | COM0~COM3  | О | LCD 公共端输出                    |
| 1~8   | SEG7~SEG0  | 0 | LCD 段输出                      |
| 25~48 | SEG31~SEG8 |   | 上しり                          |

# 功能框图



# 极限参数

| 特性   | 符号              | 极限值                                | 单位 |
|------|-----------------|------------------------------------|----|
| 电源电压 | $V_{ m DD}$     | -0.3~5.5                           | V  |
| 输入电压 | V <sub>IN</sub> | $V_{SS}$ -0.3 $\sim$ $V_{DD}$ +0.3 | V  |
| 存贮温度 | $T_{STG}$       | -50∼+125                           | °C |
| 工作温度 | Totg            | <i>-</i> 25∼+75                    | °C |



# 电参数

## ● 直流参数

| 名称                        | 符号                 | 最小值 典型值 | 最大值  | 単位  | 测试条件       |     |                       |
|---------------------------|--------------------|---------|------|-----|------------|-----|-----------------------|
| <b>冶</b> 柳                | 付写                 | 取小组     | 典型值  | 取入徂 | <u></u> 半辺 | VDD | 条件                    |
| 工作电压                      | $V_{DD}$           | 2.4     | _    | 5.2 | V          | _   | _                     |
| 工作电流                      | т                  | _       | 150  | 300 | 4          | 3V  | 无负载/LCD打开片内RC         |
| 工作电机                      | $I_{DD1}$          | _       | 300  | 600 | μΑ         | 5V  | 振荡                    |
| 工作电流                      | $I_{\mathrm{DD2}}$ | _       | 60   | 120 |            | 3V  | · 无负载/LCD打开晶振         |
| 工作电机                      | 1002               | _       | 120  | 240 | μΑ         | 5V  | 儿贝软/LCD11 / I 田1/K    |
| 工作电流                      | т                  | _       | 100  | 200 |            | 3V  | · 无负载/LCD关闭外接时钟       |
| 工1F电机                     | $I_{DD3}$          | _       | 200  | 400 | μΑ         | 5V  | 儿贝软/LCD大的介货的拼         |
|                           | т                  | _       | 0.1  | 5   |            | 3V  | 无负载                   |
| 1寸7/11 巴7/11              | $I_{STB}$          | _       | 0.3  | 10  | μΑ         | 5V  | 电源关机模式                |
| 输入低电压                     | $V_{IL}$           | 0       | _    | 0.6 | V          | 3V  | DATA WD GG DD         |
| - 柳八瓜屯压                   | V IL               | 0       | _    | 1.0 | ·          | 5V  | DATA, WR, CS, RD      |
| 输入高电压                     | V <sub>IH</sub>    | 2.4     | _    | 3.0 | V          | 3V  | DATA WD GC DD         |
|                           |                    | 4.0     | _    | 5.0 |            | 5V  | DATA, WR, CS, RD      |
| DATA, BZ, BZ, IRQ         | I <sub>OL1</sub>   | 0.5     | 1.2  |     | A          | 3V  | V <sub>OL</sub> =0.3V |
| DATA, BZ, BZ , IRQ        | IOL1               | 1.3     | 2.6  |     | mA         | 5V  | V <sub>OL</sub> =0.5V |
| DATA DZ DZ                | T                  | -0.4    | -0.8 | _   | mA         | 3V  | V <sub>OH</sub> =2.7V |
| DATA, BZ, $\overline{BZ}$ | Іон1               | -0.9    | -1.8 |     | IIIA       | 5V  | V <sub>OH</sub> =4.5V |
| LCD 公共端灌电流                | I <sub>OL2</sub>   | 80      | 150  |     | μA         | 3V  | V <sub>OL</sub> =0.3V |
| LCD 公共编准电机                | IOL2               | 150     | 250  |     | μΑ         | 5V  | V <sub>OL</sub> =0.5V |
| LCD 公共端拉电流                | T                  | -80     | -120 | _   |            | 3V  | V <sub>OH</sub> =2.7V |
| LCD 公共圳拉电机                | I <sub>OH2</sub>   | -120    | -200 |     | μΑ         | 5V  | V <sub>OH</sub> =4.5V |
| LCD SEG 端灌电流              | т.                 | 60      | 120  |     |            | 3V  | V <sub>OL</sub> =0.3V |
| LCD SEG 编催电弧              | I <sub>OL3</sub>   | 120     | 200  |     | μΑ         | 5V  | V <sub>OL</sub> =0.5V |
| LCD SEG 端拉电流              | I                  | -40     | -70  |     | 4          | 3V  | V <sub>OH</sub> =2.7V |
| LCD SEG 納24 电机            | Іонз               | -70     | -100 | _   | μΑ         | 5V  | V <sub>OH</sub> =4.5V |
| 上拉电阻                      | R <sub>PH</sub>    | 40      | 80   | 150 | kΩ         | 3V  | DATA WD CC DD         |
| 上74.474                   | INPH               | 30      | 60   | 100 | K22        | 5V  | DATA, WR, CS, RD      |

## ● 交流参数

| 名称         | 符号                  | 最小值 | 典型值         | 見士店 | 最大值 単位 | 测试条件 |        |
|------------|---------------------|-----|-------------|-----|--------|------|--------|
| <b>石</b> 你 | 11) 5               | 取小阻 | <b>兴</b> 至徂 | 取八但 |        | VDD  | 条件     |
| 系统时钟       | $f_{\mathrm{SYS1}}$ | _   | 256         | _   | kHz    | 3V   | 片内RC振荡 |
| 条统的钟<br>   |                     | _   | 256         | _   |        | 5V   |        |
| 系统时钟       | fSYS2               | _   | 32.768      | _   | kHz    | 3V   | 晶振     |
|            |                     |     | 32.768      | _   | кпи    | 5V   | 日日が区   |

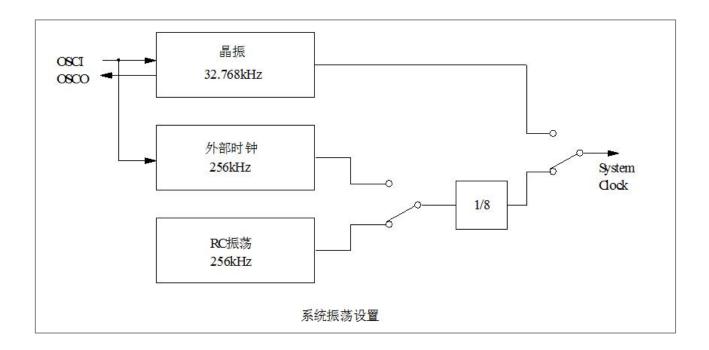


|                            |                           |      |                         |     |      | •           | - ruii-way |
|----------------------------|---------------------------|------|-------------------------|-----|------|-------------|------------|
| 系统时钟                       |                           | _    | 256                     | _   | kHz  | 3V          | 外接时钟       |
| <b>水</b> 规则扩               | fSYS3                     | _    | 256                     | _   | КПХ  | 5V          | 7门女叫 扩     |
|                            |                           | _    | f <sub>SYS1</sub> /1024 |     |      |             | 片内 RC 振荡   |
| LCD 频率                     | $f_{LCD1}$                | _    | f <sub>SYS2</sub> /128  | _   | Hz   | _           | 晶振         |
|                            |                           | _    | f <sub>SYS3</sub> /1024 | _   |      |             | 外接时钟       |
| LCD 公共端周期                  | t <sub>COM</sub>          |      | n/ f <sub>LCD</sub>     | _   | sec  |             | N: 公共端个数   |
| # 42 W. Hart M. VVIII Alle | Б                         |      | _                       | 150 | 1.77 | 3V          | 上交以田畑 500/ |
| 串行数据时钟(WR端)                | F <sub>CLK1</sub>         | _    | _                       | 300 | kHz  | 5V          | 占空比周期 50%  |
| + /= \\\ . \\ \            | Б                         | _    | _                       | 75  | 1.77 | 3V          | 上帝以居地 500/ |
| 串行数据时钟(RD)                 | F <sub>CLK2</sub>         | _    | _                       | 150 | kHz  | 5V          | 占空比周期 50%  |
| 串行接口复位脉宽                   | $t_{CS}$                  |      | 250                     | _   | ns   | _           | CS         |
|                            | t <sub>CLK</sub>          | 3.34 | _                       | _   |      | 277         | 写模式        |
| <u> </u>                   |                           | 6.67 | _                       | _   | μs   | 3V          | 读模式        |
| WR, RD 输入脉宽                |                           | 1.67 | _                       | _   | μs   | <b>73.7</b> | 写模式        |
|                            |                           | 3.34 | _                       | _   |      | 5V          | 读模式        |
| 上升/下降时间串行数据                |                           |      | 120                     |     |      | 3V          |            |
| 时宽                         | $t_{\rm r}$ , $t_{\rm f}$ |      | 120                     |     | ns   | 5V          | _          |
|                            | ,                         |      | 120                     |     |      | 3V          |            |
| 的设置时间                      | $t_{\rm su}$              |      | 120                     | _   | ns   | 5V          | _          |
|                            |                           |      | 100                     |     |      | 3V          |            |
| 的保持时间                      | $t_{\rm h}$               | _    | 120                     | _   | ns   | 5V          | _          |
| CS 到 WR , RD 时宽的           |                           |      | 100                     |     |      | 3V          |            |
| 设置时间                       | $t_{ m su}$ 1             | _    | 100                     | _   | ns   | 5V          | _          |
|                            |                           |      |                         |     |      | 3V          |            |
| 的保持时间                      | t <sub>h1</sub>           | _    | 100                     | _   | ns   | 5V          | _          |

# 功能说明

#### ● 显示存储—RAM 结构

(RAM)结构为32×4位,贮存所显示的数据。RAM的内容直接映射成LCD驱动器的内容。通过读,写和读-修改-写的命令把数据存储到RAM中。RAM中的内容映射至LCD的过程如下表所示:


|       | COM3 | COM2 | COM1 | COM0 |           |                     |
|-------|------|------|------|------|-----------|---------------------|
| SEG0  |      |      |      |      | 0         |                     |
| SEG1  |      |      |      |      | 1         |                     |
| SEG2  |      |      |      |      | 2         | lib I.I. c I        |
| SEG3  |      |      |      |      | 3         | 地址 6位<br>(A5, A4A0) |
|       |      |      |      |      |           | (A5, A4A0)          |
| SEG31 |      |      |      |      | 31        |                     |
|       | D3   | D2   | D1   | D0   | Data\Addr |                     |



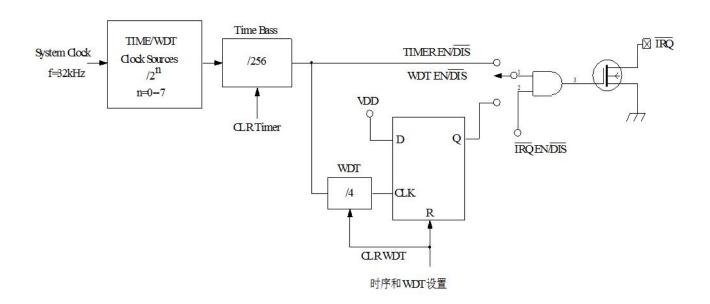
#### ● 系统振荡器

FCD1621的时钟是用于产生Time base/WDT的时钟频率、LCD驱动时钟和蜂鸣频率。该时钟来源于片内256kHz的RC振荡器,32.768kHz的外接晶振或由S/W设置的外部256kHz时钟。系统振荡的设置如下图所示。当执行完SYS DIS命令后,系统时钟停止并且LCD偏置发生器也将停止工作。此命令只适用于片内RC振荡或是外接晶振的时候。一旦系统时钟停止,则LCD显示变暗,时序基准/WDT 也将失去功能。

LCD OFF这条命令是用来关闭LCD偏置发生器的。LCD OFF命令使LCD偏置发生器关闭后,执行 SYS DIS命令减少电源损耗,相当于Power down命令一样。但如果外接系统时钟的话,SYS DIS命令 既不能关闭振荡也不能进入Power down模式。晶振可以在OSI端口外接一个32kHz的频率。在这种情况下,系统将无法进入Power down模式,这就类似于外接一个256kHz的时钟。在系统上电工作时,FCD1621就处于SYS DIS状态。



#### ● Time base 和 WDT 时序


Time base发生器是由一个产生准确时序的8级递增计数器组成的。WDT则是由一个8级Time base发生器和一个2级递增计数器组成,可以使主控制器或子系统在非正常情况下(未知的或不希望发生的跳转、执行错误等)停止工作。WDT暂停,将设置一个WDT暂停标志。Time base发生器的输出和WDT暂停标志的输出可以用命令输出到 $\overline{IRQ}$ 端。共有8种频率可以作为Time base发生器和WDT时钟的来源。频率是根据以下公式计算出来的:  $f_{WDT}=\frac{32kHZ}{2^n}$ ,n的范围为0~7。公式中的32kHz表示系统的频率,可以是32.768kHz的晶振,片内振荡(256kHz)或是外接振荡(256kHz)。

如果选择一个片内256kHz RC振荡或是外接256kHz时钟作为系统时钟的话,系统时钟被一个3级分频器预置成 32kHz。这样Time base发生器和WDT就都与命令有关系,当Time base发生器和WDT 使用同一个8级计数器的时候需小心使用与Time base发生器和WDT相关的命令。例如调用WDT DIS命令对时基发生器无效,而WDT EN不但适用于Time base发生器而且可以激活WDT暂停标志输出(WDT暂停标志连接到 $\overline{IRQ}$ 端口)。执行 TIMER EN命令后,WDT就不与 $\overline{IRQ}$ 端口相连,而时钟输出



连接到 IRQ 端口。执行CLR WDT命令可以把WDT清零,Time base发生器的内容就由CLR WDT或是CLR TIMER命令清零。CLR WDT或CLR TIMER命令分别相应的在WDT EN或TIMER EN命令之前执行。在执行 IRQ EN 命令之前应先执行CLR WDT或CLR TIMER命令。在WDT模式转换成为Time base模式之前必须执行CLR TIMER命令。一旦出现WDT暂停模式,IRQ 端将保持逻辑低电平直到执行CLR WDT或是 IRQ DIS命令。输出无效后,IRQ 脚将处于悬浮状态。通过执行 IRQ EN或 IRQ DIS命令使输出处于有效或无效状态。 IRQ EN命令可以使Time base或WDT的暂停标志位输出到 IRQ 端口。时钟和WDT的设置如下所示。在片内RC振荡或晶振的情况下,Power down模式将减少电源损耗直到通过相应的系统命令来打开或关闭振荡。在Power down模式下,Time base/WDT不起作用。

另一方面,如果选择外接时钟作为系统时钟则SYS DIS命令无效,Power down模式也不会被执行。在选择外接时钟之后,FCD1621将继续工作直到系统断电或是外接时钟被移走。在系统上电后, $\overline{IRQ}$ 被禁止。



#### ● 蜂鸣器输出

在FCD1621内部有一个简单的蜂鸣器电路。蜂鸣振荡器可提供一对蜂鸣驱动信号BZ和 BZ 产生一个蜂鸣信号。执行TONE4k和TONE2k命令可以选择两种蜂鸣输出。TONE 4k 和TONE 2k命令设置蜂鸣频率分别为4k和2k。蜂鸣输出可以通过TONE ON或TONE OFF命令来打开或关闭。蜂鸣输出端BZ和BZ 是一对反相驱动输出,用来驱动压电蜂鸣器。

| 名称    | 命令代码        | 功能                |
|-------|-------------|-------------------|
| 蜂鸣关闭  | 0000-1000-X | 关闭蜂鸣输出            |
| 4k 蜂鸣 | 010X-XXXX-X | 打开蜂鸣输出,蜂鸣频率为 4kHz |
| 2k 蜂鸣 | 011X-XXXX-X | 打开蜂鸣输出,蜂鸣频率为 2kHz |



#### ● LCD 驱动

FCD1621是一个128(32×4)点阵式LCD驱动器。通过S/W的设置可以驱动1/2或1/3的偏置,2、3或4个COM端的LCD显示器,这个特性使得FCD1621适合于多种LCD显示器。LCD驱动时钟产生于系统时钟,不管系统时钟是来源于32.768kHz晶振频率还是片内RC振荡器频率或外部频率,LCD驱动时钟的频率总是256Hz。LCD相应的命令如下表所示。

| 名称       | 命令代码                 | 功能             |
|----------|----------------------|----------------|
| LCD OFF  | <b>100</b> 00000010X | 关闭 LCD 输出      |
| LCD ON   | <b>100</b> 00000011X | 打开 LCD 输出      |
|          |                      | c=0: 1/2 偏置    |
|          |                      | c=1 : 1/3 偏置   |
| BIAS&COM | <b>100</b> 0010abXcX | ab=00 : 2 COMS |
|          |                      | ab=01 : 3 COMS |
|          |                      | ab=10 : 4 COMS |

加粗形式的**100**表明是命令模式ID,如果发送连续命令,命令模式ID(除第一个命令)将被忽略。LCD OFF 命令通过中断LCD偏置发生器来关闭LCD显示,而LCD ON命令通过启动LCD偏置发生器来开启LCD显示。BIAS和COM 命令是与LCD显示器相关的命令,通过该命令 FCD1621可驱动许多类型的LCD显示器。

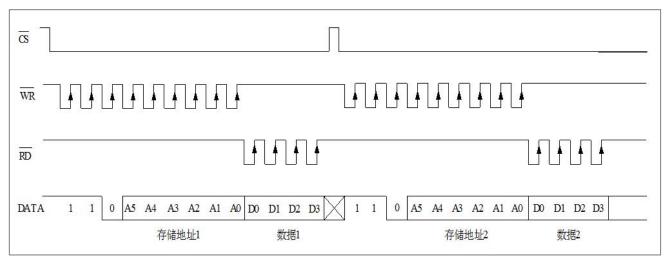
### ● 命令格式

FCD1621 可以通过 S/W 来设置,设置 FCD1621 和传送 LCD 显示数据的指令共有两种模式,分别为命令模式和数据模式。对 FCD1621 的设置称作命令模式,其 ID 是 100,由系统设置命令、系统频率选择命令、LCD 结构命令、蜂鸣频率选择命令和操作命令组成。数据模式包括读、写和读写变换操作。下表是数据模式 ID 和命令模式 ID:

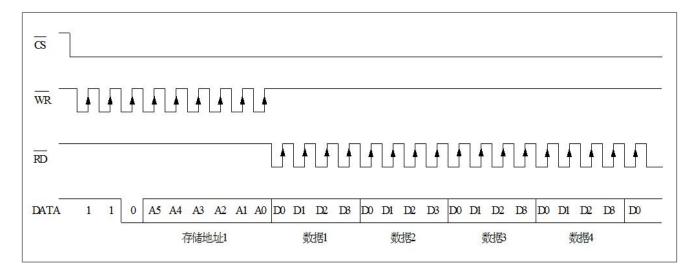
| 条件       | 模式 | ID  |
|----------|----|-----|
| 读取       | 数据 | 110 |
| 写入       | 数据 | 101 |
| 读、写之间的变换 | 数据 | 101 |
| 命令       | 命令 | 100 |

模式命令出现在数据和命令传送之前。如出现连续指令,命令模式ID 100可以被忽略。当系统工作在不连续命令或不连续地址数据模式,CS端应设置为1,而之前的工作模式将被复位。一旦CS端为0,将出现一个新的工作模式ID。

#### ● 接口

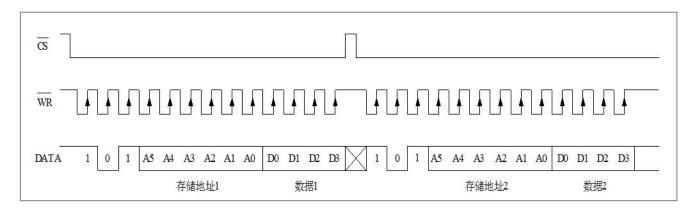

FCD1621共有4线需要接口。 CS 初始化串行接口电路和在主控制器和FCD1621之间终接通信端。 CS 为1时,主控制器和FCD1621之间数据和命令被禁止和初始化。出现命令模式和模式转换之前,需要一个高电平脉冲初始化FCD1621的串行接口。数据线是串行输入/输出线。读写数据或写入命令必须通过数据线。 RD 线是READ时钟输入。RAM中的数据在 RD 信号的下降沿被读出,读出数据将显示在 DATA 线上。主控制器在REA 信号上升沿和下一个下降沿之间读出正确数据。 WR 线是WRITE时钟输入。数据线上的数据、地址、命令在 WR 信号上升沿全被读到FCD1621。 IRQ 线被用作



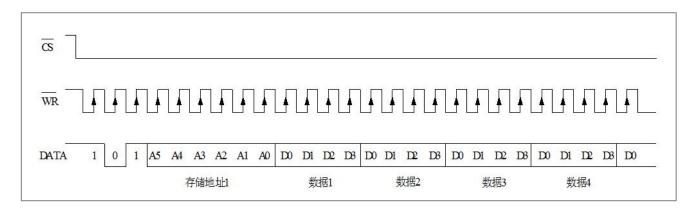

主控制器和FCD1621之间的接口。 IRQ 脚作为定时器输出或WDT溢出标志输出,由S/W设定。主控制器通过连接FCD1621的 IRQ 脚 执行时间基准或WDT功能。

## 时序图

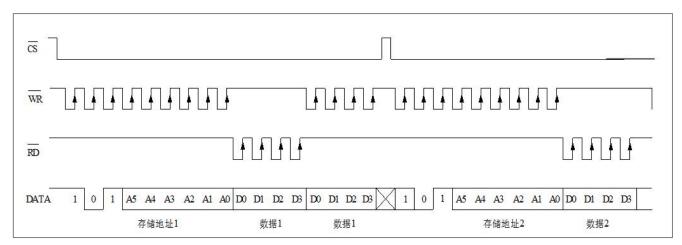
● 读模式 (命令代码: 110)




## ● 读模式 (连续地址读)

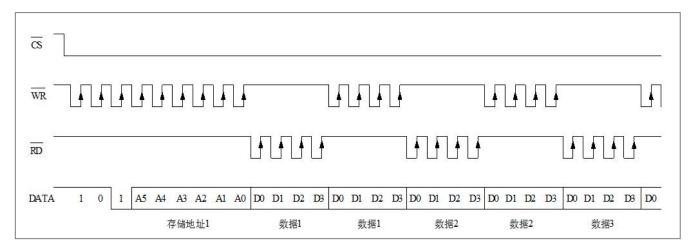




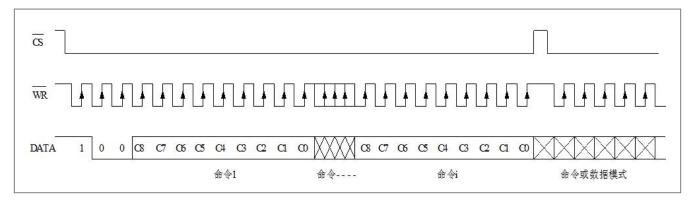


● 写模式(命令代码:101)



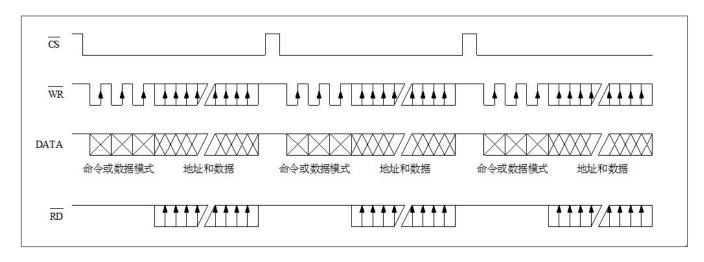
### ● 写模式 (连续地址写)




## ● 读、写更改模式 (命令代码: 101)







#### ● 读、写更改模式(连续地址存储)



### ● 命令模式 (命令代码: 100)



## ● 模式 (数据和命令模式)





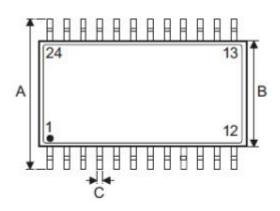
## ● 命令表格

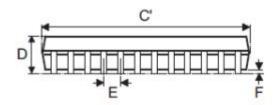
| 名称                | ID  | 命令代码                 | D/C | 功能                                                              | 复位  |
|-------------------|-----|----------------------|-----|-----------------------------------------------------------------|-----|
| READ              | 110 | A5A4A3A2A1A0D0D1D2D3 | D   | 从 RAM 中读取数据                                                     |     |
| WRITE             | 101 | A5A4A3A2A1A0D0D1D2D3 | D   | 把数据写入到 RAM 中                                                    |     |
| READ-MODIFY-WRITE | 101 | A5A4A3A2A1A0D0D1D2D3 | D   | 从 RAM 中读取和写入数据                                                  |     |
| SYS DIS           | 100 | 0000-0000-X          | С   | 关闭系统时钟和 LCD 偏置发生器                                               | YES |
| SYS EN            | 100 | 0000-0001-X          | С   | 打开系统时钟                                                          |     |
| LCD OFF           | 100 | 0000-0010-X          | С   | 关闭 LCD 偏置发生器                                                    | YES |
| LCD ON            | 100 | 0000-0011-X          | С   | 打开 LCD 偏置发生器                                                    |     |
| TIMERS DIS        | 100 | 0000-0100-X          | С   | 禁止 Time base 输出                                                 |     |
| WDT DIS           | 100 | 0000-0101-X          | С   | 禁止 WDT 暂停标志输出                                                   |     |
| TIMER EN          | 100 | 0000-0110-X          | С   | 允许 Time base 输出                                                 |     |
| WDT EN            | 100 | 0000-0111-X          | С   | 允许 WDT 暂停标志输出                                                   |     |
| TONE OFF          | 100 | 0000-1000-X          | С   | 关闭蜂鸣输出                                                          | YES |
| TONE ON           | 100 | 0000-1001-X          | С   | 打开蜂鸣输出                                                          |     |
| CLR TIMER         | 100 | 0000-11XX-X          | С   | 清空 Time base 发生器中的内容                                            |     |
| CLRWDT            | 100 | 0000-111X-X          | С   | 清空 WDT 中的内容                                                     |     |
| XTAL 32k          | 100 | 0001-01XX-X          | С   | 系统时钟, 晶振                                                        |     |
| RC 256k           | 100 | 0001-10XX-X          | С   | 系统时钟, 片内 RC 振荡                                                  | YES |
| EXT 256k          | 100 | 0001-11XX-X          | С   | 外接时钟                                                            |     |
| BIAS 1/2          | 100 | 0010-abX0-X          | С   | LCD 1/2 偏置设置 ab=00 : 2<br>COMS ab=01 : 3 COMS<br>ab=10 : 4 COMS |     |
| BIAS 1/3          | 100 | 0010-abX1-X          | С   | LCD 1/3 偏置设置 ab=00 : 2<br>COMS ab=01 : 3 COMS<br>ab=10 : 4 COMS |     |
| TONE 4k           | 100 | 010X-XXXX-X          | С   | 蜂鸣频率输出: 4kHz                                                    |     |
| TONE 2k           | 100 | 011X-XXXX-X          | С   | 蜂鸣频率输出: 2kHz                                                    |     |
| ĪRQ DIS           | 100 | 100X-0XXX-X          | С   | 禁止 IRQ 输出                                                       | YES |
| ĪRQ EN            | 100 | 100X-1XXX-X          | С   | 允许 IRQ 输出                                                       |     |
| F1                | 100 | 101X-X000-X          | С   | Time base/WDT 时钟输出: 1Hz<br>WDT 暂停标志: 4s                         |     |
| F2                | 100 | 101X-X001-X          | С   | Time base/WDT 时钟输出: 2Hz<br>WDT 暂停标志: 2s                         |     |
| F4                | 100 | 101X-X010-X          | С   | Time base/WDT 时钟输出: 4Hz<br>WDT 暂停标志: 1s                         |     |
| F8                | 100 | 101X-X011-X          | С   | 时基/WDT 时钟输出: 8Hz WDT<br>暂停标志: 1/2s                              |     |
| F16               | 100 | 101X-X100-X          | С   | Time base/WDT 时钟输出:<br>16Hz WDT 暂停标志: 1/4s                      |     |



|        |                      |                 |   |                       | _   |
|--------|----------------------|-----------------|---|-----------------------|-----|
| F22    | 100                  | 100 101V V101 V |   | Time base/WDT 时钟输出:   |     |
| F32    | 100                  | 101X-X101-X     | С | 32Hz WDT 暂停标志: 1/8s   |     |
| F64    | 100                  | 101W W110 W     |   | Time base/WDT 时钟输出:   |     |
| Γ04    | 100                  | 101X-X110-X     | С | 64Hz WDT 暂停标志: 1/16s  |     |
| E120   | E120 100 101V V111 V |                 |   | Time base/WDT 时钟输出:   | VEC |
| F128   | 100                  | 101X-X111-X     | C | 128Hz WDT 暂停标志: 1/32s | YES |
| TEST   | 100                  | 1110-0000-X     | С | 测试模式                  |     |
| NORMAL | 100                  | 1110-0011-X     | С | 普通模式                  | YES |

注释: A5~A0: RAM地址


D3~D0: RAM数据

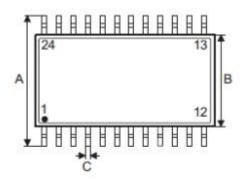

D/C: 数据/命令模式

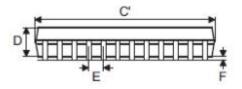


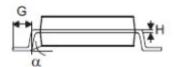
# 封装尺寸

## (1) 24SOP封装尺寸:





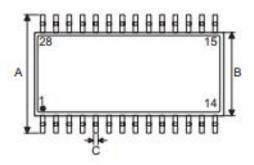



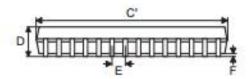


| 符号 | 尺寸(单位: mm) |           |         |  |
|----|------------|-----------|---------|--|
|    | 最小         | 正常        | 最大      |  |
| A  | ( )        | 10.30 BSC | _       |  |
| В  | 2-1        | 7.5 BSC   | _       |  |
| C  | 0.31       | 1000      | 0.51    |  |
| C' | 2-1        | 15.4 BSC  | <u></u> |  |
| D  | 33-13      | _         | 2.65    |  |
| E  | ·          | 1.27 BSC  | _       |  |
| F  | 0.10       | _         | 0.30    |  |
| G  | 0.40       | _         | 1.27    |  |
| H  | 0.20       | _         | 0.33    |  |
| α  | 0°         | _         | 8°      |  |



## (2) 24SSOP封装尺寸:





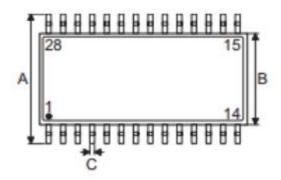



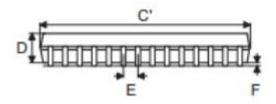

| 符号 | 尺寸 ( 单位: mm) |           |      |  |
|----|--------------|-----------|------|--|
|    | 最小           | 正常        | 最大   |  |
| A  |              | 6.0 BSC   | -    |  |
| В  | _            | 3.9 BSC   | _    |  |
| C  | 0.20         | _         | 0.30 |  |
| C' | _            | 8.66 BSC  | _    |  |
| D  | 0.000        | _         | 1.75 |  |
| Е  | _            | 0.635 BSC | _    |  |
| F  | 0.10         | _         | 0.25 |  |
| G  | 0.41         | _         | 1.27 |  |
| Н  | 0.10         | _         | 0.25 |  |
| α  | 0°           | _         | 8°   |  |



(3) 28SOP封装尺寸:





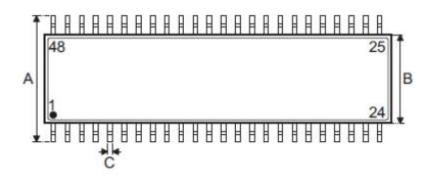



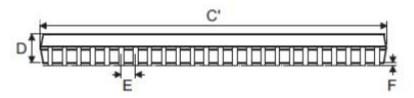

| 符号 | 尺寸(单位: mm)   |                  |      |
|----|--------------|------------------|------|
|    | 最小           | 正常               | 最大   |
| A  | _            | 10.30 BSC        | 1    |
| В  |              | 7.5 BSC          |      |
| С  | 0.31         | _                | 0.51 |
| C' | -            | 17.9 BSC         | -    |
| D  | _            | <del>-</del>     | 2.65 |
| E  | N <u>=</u> 3 | 1.27 BSC         |      |
| F  | 0.10         | -                | 0.30 |
| G  | 0.40         | _                | 1.27 |
| Н  | 0.20         | 9 <del>-</del> 3 | 0.33 |
| a  | 0°           |                  | 8°   |

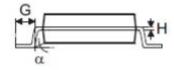


## (4) 28SSOP封装尺寸:





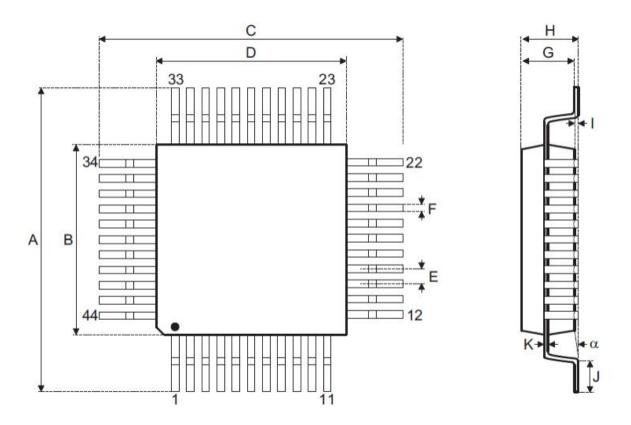





| ht D | 尺寸 (单位: mm) |           |      |
|------|-------------|-----------|------|
| 符号   | 最小          | 正常        | 最大   |
| A    | -           | 6.0 BSC   | -    |
| В    | _           | 3.9 BSC   | 100  |
| C    | 0.20        |           | 0.30 |
| C'   | -           | 9.9 BSC   |      |
| D    | _           | _         | 1.75 |
| E    | _           | 0.635 BSC | -    |
| F    | 0.10        | _         | 0.25 |
| G    | 0.41        | -         | 1.27 |
| Н    | 0.10        |           | 0.25 |
| α    | 0°          |           | 8°   |



## (5) 48SSOP封装尺寸:

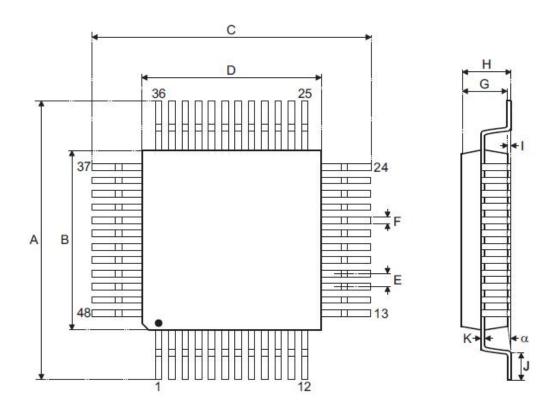







| Symbol | Dimensions in mm |          |       |  |
|--------|------------------|----------|-------|--|
|        | Min.             | Nom.     | Max.  |  |
| Α      | 10.03            | _        | 10.67 |  |
| В      | 7.39             | 7.49     | 7.59  |  |
| С      | 0.20             | _        | 0.34  |  |
| C'     | 15.75            | 15.88    | 16.00 |  |
| D      | 2.41             | 2.59     | 2.79  |  |
| E      | -                | 0.64 BSC | _     |  |
| F      | 0.20             | 0.30     | 0.41  |  |
| G      | 0.51             | _        | 1.02  |  |
| Н      | 0.13             | _        | 0.25  |  |
| α      | 0°               |          | 8°    |  |




## (6) 44LQFP封装尺寸:



| Symbol | Dimensions in mm |           |                 |  |
|--------|------------------|-----------|-----------------|--|
|        | Min.             | Nom.      | Max.            |  |
| Α      | -                | 12.00 BSC | <u>-</u>        |  |
| В      | 1221             | 10.00 BSC | <u> </u>        |  |
| С      | )<br>) <u> </u>  | 12.00 BSC | <u>80 - 1</u> 0 |  |
| D      | 1221             | 10.00 BSC | <u>8 </u>       |  |
| E      | 1221             | 0.80 BSC  | <u>8:1</u> 8    |  |
| F      | 0.30             | 0.37      | 0.45            |  |
| G      | 1.35             | 1.40      | 1.45            |  |
| н      | .—.              | _         | 1.60            |  |
| . 1    | 0.05             |           | 0.15            |  |
| J      | 0.45             | 0.60      | 0.75            |  |
| K      | 0.09             | _         | 0.20            |  |
| α      | 0°               | i—        | 7°              |  |



## (7) 48LQFP封装尺寸:



| Symbol | Dimensions in mm                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |  |
|--------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
|        | Min.                                                | Nom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Max.              |  |
| Α      | ,                                                   | 9.00 BSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70-32             |  |
| В      |                                                     | 7.00 BSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                 |  |
| С      | <u>12</u>                                           | 9.00 BSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u></u> 5j        |  |
| D      | \$ <del>5-1</del> 5                                 | 7.00 BSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>11-2</del> 2 |  |
| E      | -                                                   | 0.50 BSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del></del> 9     |  |
| F      | 0.17                                                | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.27              |  |
| G      | 1.35                                                | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.45              |  |
| н      | 1 <del>5 -                                   </del> | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.60              |  |
| 1      | 0.05                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15              |  |
| J      | 0.45                                                | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.75              |  |
| K      | 0.09                                                | 10 to | 0.20              |  |
| α      | 0°                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>7</b> °        |  |